跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳彥佑
研究生(外文):Chen,Yen-Yu
論文名稱:矽基太陽能電池抗電位誘導衰變效應之研究
論文名稱(外文):Minimization of Potential Induced Degradation for Silicon Based Solar Cells
指導教授:潘扶民
指導教授(外文):Pan,Fu-Ming
口試委員:潘扶民陳智吳耀銓
口試委員(外文):Pan,Fu-MingChen,ChihWu,sermon
口試日期:2017-11-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院半導體材料與製程設備學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:86
中文關鍵詞:電位誘導衰變現象PID效應
外文關鍵詞:Potential induced degradationPID effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
在太陽能產業發展當中存在重要的品質與可靠度的問題,此問題將會導致太陽能模組整體發電的效率產生衰減,更嚴重的甚至將使整體太陽能模組失效。此問題稱為電位誘導引發的衰變現象(Potential Induced Degradation,PID),又簡稱為PID效應。而本論文研究的主題則是研究此議題所發生的原因,藉由了解與分析它的成因再同時提出如何減緩和解決此議題。
本實驗研究分為兩個部分;第一,藉由調整矽基太陽能電池抗反射層(氮化矽薄膜)的成膜氣體流量比(SiH4:NH3)來觀察太陽能電池對於PID效應的影響與變化。而在文獻探討中也可以發現,當成膜氣體當中的SiH4比例增高時,將使得氮化矽薄膜緻密性與鍵結產生改變,此項特性將可阻滯外來的鈉金屬離子的遷移,將可提高矽基太陽能電池對於PID效應的抵抗。
第二,在矽基太陽能電池的製程當中,使用熱氧化法新增一氧化層於矽基板與抗反射層之間,使之形成Si/SiO2/SiNx結構,藉由TEM分析後,發現此項結構當中的氧化層厚度約為10nm。在進行氧化過程當中,在界面處將存在一表面的的固定正電荷(Fixed Oxide Charge),此界面的正電荷將使得外來的鈉金屬離子在侵入太陽能電池時如同遇上一電荷屏障,並可有效阻滯金屬離子的移動,也因此可以提高矽基太陽能電池的對於PID效應的抵抗。
Potential induced degradation (PID) is an important reliability issue in the silicon-based solar energy technology. This problem greatly degrades the photoconversion efficiency of the solar cell module and, in the worst case, results in the overall failure of the solar cell system. This thesis discusses the causes of the PID effect and focuses modification methods alleviating the effect.
The study is divided into two parts. First, we adjusted the gas flow ratio of the gas precursor (SiH4/NH3) to study the influence of the ratio on the film quality of the silicon nitride (SiNx) anti-reflection coating layer, which can alleviate the PID effect by retarding sodium ions from diffusing from the glass panel to the solar cell module. From the study, a high SiH4/NH3 flow rate ratio improves the chemical structure of the nitride film, resulting in a better performance in blocking the migration of foreign sodium ions and thus a improved resistance against the PID effect.
In the second study, we modify the device structure of the Si-base solar cell by depositing a thermal silicon oxide layer between the Si wafer and the anti-reflection layer. forming a Si/ SiO2/ SiNx multilayer structure. The thickness of the oxide layer was about 10 nm according to TEM analysis. Because of the oxide layer, positive fixed oxide charges are present at the interface and forms a potential barrier retarding the invasion of external sodium metal ions from the solar cell packaging materials into the solar cell modules. As a consequence PID effect can be greatly reduced by the addition of the thermal oxide layer.
摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 序論 1
前言 1
1.1矽基太陽能電池技術趨勢近況與PID現象 2
1.2 研究目的 4
1.3論文架構 5
第二章 文獻回顧 8
2.1 前言 8
2.2 太陽能電池原理 8
2.3 P-N界面 14
2.4太陽能電池等效電路模型 21
2.5太陽能電池電性參數 25
2.6 PID效應 28
2.7 PID研究回顧 33
第三章 研究方法 44
3.1太陽能電池製作 44
3.2 太陽光電量測系統說明 51
3.3 PID可靠度測試方法 52
3.4 電致發光分析儀 53
3.5 材料分析 55
第四章 結果與討論 62
4.1引言 62
4.2調整抗反射層薄膜特性分析討論 62
4.3新增熱氧化製程與PID特性分析討論 69
4.4綜合分析討論 77
第五章 結論與未來工作 80
參考文獻 83
[1] http://pv.energytrend.com.tw
[2] http://en.wikipedia.org/wiki/A._E._Becquerel.
[3] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A new Silicon p-n Junction. Photocell for Converting Solar Radiation into Electrical Power,” J.Appl. Phys.,vol. 25, 676-677, 1954.
[4] William Sockley, and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J.Appl. Phys., vol. 32, no. 3, 510-519, 1961.
[5] Simon Koch and Daniel Nieschalk,” Potential Induced Degradation Effects on crystalline silicon cells with various antireflective oatings”.
[6] Peter Hacke, Kent Terwilliger, Ryan Smith, Stephen Glick, Joel
Pankow, Michael Kempe, and Sarah Kurtz, System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test,
[7]戴寶通,鄭晃忠, 太陽能電池技術手冊, 1 ed. 新竹市: 台灣電子材
料與元件協會, 1998.
[8] A. Luque and S. Hegedus, “Handbook of Photovoltaic Science and
Engineering,” Chap. 3, John Wiley & Sons, Ltd, 2003.
[9] https://zh.wikipedia.org/zh-tw/光生伏打效應
[10]黃惠良、曾百亨等著,“太陽電池Solar Cells”,五南圖書出版公
司.
[11] Michael Quirk, Julian Serda , 半導體製造技術-培生書局.
[12] M. A. Green 著,曹昭陽、狄大衛、李秀文譯,“太陽電池工作原理,技術與系統應用”,五南圖書出版公司.
[13] 曹曉東 等 江陰俊鑫科技有限公司 《PID效應的背景與介紹》
[14] 朱堅武 等 江陰俊鑫科技有限公司 《光伏組件封裝材料和PID
的關係初探》
[15] Juliane Berghold, Simon Koch, Anja Böttcher, Asier Ukar, Paul Grunow “PID and correlation with field experiences”
[16] Toshiki Yagi and Yukiharu Uraoka “Ray-trace simulation of light trapping in silicon solar cell with texture structures”
[17] A.W. Czanderna and F.J. Pern “Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review”
[18] J.Berghold et al ,SOLON CORPORATION, Potential Induced Degradation of solar cells and panels.
[19] V.Naumann et al ,Energy Procedia, Micro Structural Root Cause Analysis of Potential Induced Degradation in c-Si Solar Cells.
[20] Daniel N. Wright et al, Plasma-enhanced chemical vapour-deposited silicon nitride films ;The effect of annealing on optical properties and etch rates.
[21] 柯賢文,”表面與薄膜處理技術”,全華圖書股份有限公司
[22] Donald L.Smith et al, Mechanism of SiNxHy Deposition from
NH3-SiH4 Plasma.
[23] J. W. Osenbach ,Sodium diffusion in plasma deposited amorphous oxygen doped silicon nitride (aSiON:H) films.
[24] P. W. Bohn and R. C. Manz, "a multiresponse factorial study of reactor parameters in plasma-enhanced CVD growth of amorphous-silicon nitride," Journal of the Electrochemical Society, vol. 132, pp. 1981, 1985.
[25] D. M. Knotter and T. J. J. Denteneer, "Etching Mechanism of Silicon Nitride in HF-Based Solutions," Journal of the Electrochemical Society, vol. 148, pp. F43, 2001.
[26] Volker Naumann et al, Phys. Status solidi RRL 7 No5 315-318(2013) , The role of stacking faults for the formation of shunts during potential-induced degradation of crystalline Si solar cells.
[27] Volker Naumann et al, Solar Energy Materials and Solar Cells(2013),Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells.
[28] H. Nagel,P.Saint-Cast et al, Inline processes for the stabilization of p-type crystalline si solar cells against potential-induced degradation.
[29] Hayoung Parka and Soonwoo Kwon, ”Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution”.
[30] A. Kaminskia and B. Vandellea “Aluminium BSF in silicon solar
cells”.
[31] Simon Koch and Christian Seidel,” Polarization effects and tests for crystalline silicon cells”
[32] http://www.bergerlichttechnik.de
[33] http://www.istgroup.com
[34] http://www.ndl.org.tw
[35] http://www.tohokaken-cat.jp/pic/photo_analysis/eds_theory.jpg
[36] http://www.raditech.com.tw
[37] http://www.itrc.narl.org.tw
[38] R. F. Bunshah, Handbook of deposition technologies for films and coatings: science, technology, and applications: William Andrew Inc., 1994.
[39] A. A. R. Elshabini-Riad, A. Elshabini, and F. D. Barlow, Thin film technology handbook: McGraw-Hill Professional, 1998
[40] M. Ohring, Materials science of thin films: deposition and structure: Academic press, 2002.
[41] Hong Xiao著,羅正忠、張鼎張 譯,“半導體製程技術導論”,歐
亞書局出版.
[42] Simon Koch et al, Potential Induced Degradation effects on crystalline silicon cells with various antireflective coatings..
[43] H.Nagel et al, Inline processes for the stabilization of p-type crystalline SI solar cells against Potential-Induced Degradation .
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top