跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 09:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅聿平
研究生(外文):Lo, Yu-Ping
論文名稱:光子晶體的等效介電係數表面與奈米粒子散射之間的影響
論文名稱(外文):Nanoparticle scattering modification at the effective epsilon-near-zero surface of photonic crystals
指導教授:陳國平陳國平引用關係
指導教授(外文):Chen, Kuo-Ping
口試委員:朱士維張世慧陳顯禎
口試委員(外文):Chu, Shi-WeiChang, Shih-HuiChen, Shean-Jen
口試日期:2017-09-08
學位類別:碩士
校院名稱:國立交通大學
系所名稱:影像與生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:69
中文關鍵詞:金屬奈米天線矽奈米粒子光子晶體介電係數趨於零材料暗場成像散射
外文關鍵詞:Metal nanoantennasSilicon nanoparticlesPhotonic crystalsEpsilon-near-zeroDark-field imagingScattering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
 不同材料的奈米粒子被外加電磁場激發時,其光學特性已經被許多研究團隊廣泛討論,近期有些研究團隊將奈米粒子放置在具有高反射特性的金薄膜上,當P極化光入射時,在長波長下能夠量測到明顯的散射訊號,奈米粒子與金薄膜間的空隙會產生電場侷域性增強的現象。在此篇論文中,我們使用常見的一維光子晶體,即布拉格反射器(Distributed Bragg reflector, DBR)取代金薄膜作為奈米粒子的高反射基板,探討DBR基板對於奈米粒子其散射訊號的影響。
 我們利用光學薄膜矩陣法計算出DBR的等效介電係數,從計算結果中可以得知,在接近頻帶邊緣的波長位置下,DBR具有等效介電係數趨近於零值(epsilon-near-zero, ENZ)的特性,並且從模擬及量測上觀察到奈米粒子的共振頻率會出現在DBR的等效ENZ波長附近。另外,DBR基板對於奈米粒子的散射訊號影響則會與奈米粒子的結構高度有關。
 When the nanoparticle of different materials are polarized in a regular direction, the nanoparticle will have localized optical resonance at a particular wavelength. The wavelength of optical resonance would be influenced by the refractive index of the surrounding medium of the nanoparticle. In this work, silver and silicon nanoparticles would be fabricated on the top surface of the one-dimension photonic crystals-Distributed Bragg reflector (DBR), and the scattering signal would be measured by the dark-filed microscopy. The real part of effective permittivity of the DBR exhibit the near-zero condition at the wavelength near the band edge, so that the nanoparticles of the different materials have special scattering response for the DBR substrate. In the photonic band gap, the real part of effective permittivity also exhibit conditions that are extreme negative. Therefore, the nanoparticles of the different materials also have the different scattering response in the photonic band gap.
致謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VI
第1章 簡介 1
1.1 研究動機 1
1.2 侷域表面電漿共振 (Localized surface plasmon) 3
1.3 電偶極與磁偶極 (Electric dipole and magnetic dipole) 7
1.4 米氏定理:散射截面積 (Mie theory) 8
1.5 光子晶體 (Photonic crystal) 10
1.6 介電係數趨近於零點材料 (Epsilon-near-zero) 11
1.7 釘扎效應 (Pinning effect) 12
第2章 模擬與設計 14
2.1 結構設計 14
2.2 有限元素分析法 (Finite element method, FEM) 15
2.3 時域有限差分法 17
2.4 薄膜光學矩陣法 19
第3章 樣品製作與量測方法 24
3.1 電子束微影製作銀奈米天線 24
3.2 旋轉塗佈法佈置矽奈米粒子 26
3.3 量測方法 28
第4章 實驗結果與討論 31
4.1 分散式布拉格反射器之反射率量測結果 31
4.2 等效介電係數計算之結果 34
4.3 奈米天線的散射頻譜在不同基板上的比較 36
4.4 金屬與介電質粒子的散射頻譜比較 42
4-5 近場討論 47
4-6 奈米粒子結構的討論 54
第5章 結論 58
第6章 未來展望 61
參考文獻 65
[1] C. J. Orendorff, T. K. Sau, and C. J. Murphy, "Shape‐Dependent Plasmon‐Resonant Gold Nanoparticles," Small, vol. 2, pp. 636-639, 2006.
[2] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, "Magnetic light," Scientific Reports, vol. 2, p. srep00492, 2012.
[3] C.-Z. Huang, M.-J. Wu, and S.-Y. Chen, "High Order Gap Modes of Film-Coupled Nanospheres," The Journal of Physical Chemistry C, vol. 119, pp. 13799-13806, 2015.
[4] Y.-L. Kuo, S.-Y. Chuang, S.-Y. Chen, and K.-P. Chen, "Enhancing the Interaction between High-Refractive Index Nanoparticles and Gold Film Substrates Based on Oblique Incidence Excitation," ACS Omega, vol. 1, pp. 613-619, 2016.
[5] Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, et al., "Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons," ACS Photonics, 2017.
[6] Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-g. Sun, T. Nagao, et al., "Tamm plasmon selective thermal emitters," Optics Letters, vol. 41, pp. 4453-4456, 2016.
[7] T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, et al., "Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons," Applied Physics Letters, vol. 110, p. 051101, 2017.
[8] S. Vetrov, R. G. Bikbaev, N. Rudakova, K.-P. Chen, and I. Timofeev, "Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite," Journal of Optics, 2017.
[9] S. A. Maier, Plasmonics: fundamentals and applications: Springer Science & Business Media, 2007.
[10] K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annual Review of Physical Chemistry, vol. 58, pp. 267-297, 2007.
[11] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, vol. 16, pp. 1685-1706, 2004.
[12] L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Letters, vol. 5, pp. 2034-2038, 2005.
[13] H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. Yang, "Nanoplasmonics: classical down to the nanometer scale," Nano Letters, vol. 12, pp. 1683-1689, 2012.
[14] P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science, vol. 308, pp. 1607-1609, 2005.
[15] C.-W. Su and K.-P. Chen, "Broadband gold nanoantennas arrays with transverse dimension effects," Optics Express, vol. 24, pp. 17760-17765, 2016.
[16] J.-H. Yang and K.-P. Chen, "Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas," Scientific Reports, vol. 6, 2016.
[17] A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, et al., "Optical nanoantennas," Physics-Uspekhi, vol. 56, p. 539, 2013.
[18] O. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gomez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Letters, vol. 7, pp. 2871-2875, 2007.
[19] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photonics, vol. 3, pp. 654-657, 2009.
[20] N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, et al., "Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy," Nano Letters, vol. 10, pp. 4952-4955, 2010.
[21] M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, "Photodetection with active optical antennas," Science, vol. 332, pp. 702-704, 2011.
[22] G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths," Optical Materials Express, vol. 2, pp. 478-489, 2012.
[23] Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, et al., "Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal," RSC Advances, vol. 6, pp. 84500-84504, 2016.
[24] Z.-Y. Yang, Y.-H. Chen, B.-H. Liao, and K.-P. Chen, "Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering," Optical Materials Express, vol. 6, pp. 540-551, 2016.
[25] M.-Y. Lu, C.-Y. Tsai, H.-A. Chen, Y.-T. Liang, K.-P. Chen, S. Gradečak, et al., "Plasmonic enhancement of Au nanoparticle—embedded single-crystalline ZnO nanowire dye-sensitized solar cells," Nano Energy, vol. 20, pp. 264-271, 2016.
[26] K.-P. Chen, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, "Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals," Optics Express, vol. 24, pp. 16815-16821, 2016.
[27] C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, "Tunability and optimization of coupling efficiency in tamm plasmon modes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, pp. 262-267, 2015.
[28] Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, "Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves," Applied Physics Letters, vol. 105, p. 031117, 2014.
[29] Z.-Y. Yang and K.-P. Chen, "Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas," Optics Express, vol. 22, pp. 12737-12749, 2014.
[30] A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, "Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion," Sensors, vol. 11, pp. 7178-7187, 2011.
[31] S. Ishii, A. V. Kildishev, V. M. Shalaev, K.-P. Chen, and V. P. Drachev, "Metal nanoslit lenses with polarization-selective design," Optics Letters, vol. 36, pp. 451-453, 2011.
[32] K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, "Drude relaxation rate in grained gold nanoantennas," Nano Letters, vol. 10, pp. 916-922, 2010.
[33] W. Chen, K. Chen, M. D. Thoreson, A. Kildishev, and V. M. Shalaev, "Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing," Applied Physics Letters, vol. 97, p. 211107, 2010.
[34] Z. Liu, K.-P. Chen, X. Ni, V. P. Drachev, V. M. Shalaev, and A. V. Kildishev, "Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence," Journal of the Optical Society of America B, vol. 27, pp. 2465-2470, 2010.
[35] X. Wang, K.-p. Chen, M. Zhao, and D. D. Nolte, "Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films," Optics Express, vol. 18, pp. 24859-24867, 2010.
[36] J. Borneman, K.-P. Chen, A. Kildishev, and V. Shalaev, "Simplified model for periodic nanoantennae: linear model and inverse design," Optics Express, vol. 17, pp. 11607-11617, 2009.
[37] C.-W. Lin, K.-P. Chen, C.-N. Hsiao, S. Lin, and C.-K. Lee, "Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor," Sensors and Actuators B: Chemical, vol. 113, pp. 169-176, 2006.
[38] C.-W. Lin, K.-P. Chen, M.-C. Su, C.-K. Lee, and C.-C. Yang, "Bio-plasmonics: nano/micro structure of surface plasmon resonance devices for biomedicine," Optical and Quantum Electronics, vol. 37, pp. 1423-1437, 2005.
[39] C.-W. Lin, K.-P. Chen, M.-C. Su, T.-C. Hsiao, S.-S. Lee, S. Lin, et al., "Admittance loci design method for multilayer surface plasmon resonance devices," Sensors and Actuators B: Chemical, vol. 117, pp. 219-229, 2006.
[40] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles: John Wiley & Sons, 2008.
[41] M. Kerker, D.-S. Wang, and C. Giles, "Electromagnetic scattering by magnetic spheres," Journal of the Optical Society of America, vol. 73, pp. 765-767, 1983.
[42] J. Ouellette, "Seeing the future in photonic crystals," The Industrial Physicist, vol. 7, pp. 14-17, 2001.
[43] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light: Princeton university press, 2011.
[44] R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E, vol. 70, p. 046608, 2004.
[45] B. T. Schwartz and R. Piestun, "Total external reflection from metamaterials with ultralow refractive index," Journal of the Optical Society of America B, vol. 20, pp. 2448-2453, 2003.
[46] M. Silveirinha and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Physical review letters, vol. 97, p. 157403, 2006.
[47] A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, vol. 75, p. 155410, 2007.
[48] D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, et al., "Funneling light through a subwavelength aperture with epsilon-near-zero materials," Physical Review Letters, vol. 107, p. 133901, 2011.
[49] E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, "Experimental verification of n= 0 structures for visible light," Physical Review Letters, vol. 110, p. 013902, 2013.
[50] J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, et al., "Role of epsilon-near-zero substrates in the optical response of plasmonic antennas," Optica, vol. 3, pp. 339-346, 2016.
[51] N. Engheta, "Pursuing near-zero response," Science, vol. 340, pp. 286-287, 2013.
[52] S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, "Optical response of dipole antennas on an epsilon-near-zero substrate," Physical Review A, vol. 93, p. 063846, 2016.
[53] C. DeVault, V. Zenin, A. Pors, J. Kim, K. Chaudhuri, S. Bozhevolnyi, et al., "Plasmonic Antenna Resonance Pinning and Suppression of Near-Field Coupling from Epsilon-Near-Zero Substrate," in CLEO: QELS_Fundamental Science, 2017, p. FTu4H. 5.
[54] G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, et al., "Anisotropic plasmonic sensing of individual or coupled gold nanorods," The Journal of Physical Chemistry C, vol. 115, pp. 22877-22885, 2011.
[55] M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, "Nonlinear plasmonic sensing," Nano Letters, vol. 16, pp. 3155-3159, 2016.
[56] A. Tittl, C. Kremers, J. Dorfmüller, D. N. Chigrin, and H. Giessen, "Spectral shifts in optical nanoantenna-enhanced hydrogen sensors," Optical Materials Express, vol. 2, pp. 111-118, 2012.
[57] 李正中, 薄膜光學與鍍膜技術 , 第七版. 新北市: 藝軒圖書出版社, 2012
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top