|
[1] C. J. Orendorff, T. K. Sau, and C. J. Murphy, "Shape‐Dependent Plasmon‐Resonant Gold Nanoparticles," Small, vol. 2, pp. 636-639, 2006. [2] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, "Magnetic light," Scientific Reports, vol. 2, p. srep00492, 2012. [3] C.-Z. Huang, M.-J. Wu, and S.-Y. Chen, "High Order Gap Modes of Film-Coupled Nanospheres," The Journal of Physical Chemistry C, vol. 119, pp. 13799-13806, 2015. [4] Y.-L. Kuo, S.-Y. Chuang, S.-Y. Chen, and K.-P. Chen, "Enhancing the Interaction between High-Refractive Index Nanoparticles and Gold Film Substrates Based on Oblique Incidence Excitation," ACS Omega, vol. 1, pp. 613-619, 2016. [5] Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, et al., "Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons," ACS Photonics, 2017. [6] Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-g. Sun, T. Nagao, et al., "Tamm plasmon selective thermal emitters," Optics Letters, vol. 41, pp. 4453-4456, 2016. [7] T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, et al., "Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons," Applied Physics Letters, vol. 110, p. 051101, 2017. [8] S. Vetrov, R. G. Bikbaev, N. Rudakova, K.-P. Chen, and I. Timofeev, "Optical Tamm states at the interface between a photonic crystal and an epsilon-near-zero nanocomposite," Journal of Optics, 2017. [9] S. A. Maier, Plasmonics: fundamentals and applications: Springer Science & Business Media, 2007. [10] K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annual Review of Physical Chemistry, vol. 58, pp. 267-297, 2007. [11] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, vol. 16, pp. 1685-1706, 2004. [12] L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Letters, vol. 5, pp. 2034-2038, 2005. [13] H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. Yang, "Nanoplasmonics: classical down to the nanometer scale," Nano Letters, vol. 12, pp. 1683-1689, 2012. [14] P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science, vol. 308, pp. 1607-1609, 2005. [15] C.-W. Su and K.-P. Chen, "Broadband gold nanoantennas arrays with transverse dimension effects," Optics Express, vol. 24, pp. 17760-17765, 2016. [16] J.-H. Yang and K.-P. Chen, "Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas," Scientific Reports, vol. 6, 2016. [17] A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, et al., "Optical nanoantennas," Physics-Uspekhi, vol. 56, p. 539, 2013. [18] O. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gomez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Letters, vol. 7, pp. 2871-2875, 2007. [19] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photonics, vol. 3, pp. 654-657, 2009. [20] N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, et al., "Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy," Nano Letters, vol. 10, pp. 4952-4955, 2010. [21] M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, "Photodetection with active optical antennas," Science, vol. 332, pp. 702-704, 2011. [22] G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths," Optical Materials Express, vol. 2, pp. 478-489, 2012. [23] Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Y. Reshetnyak, et al., "Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal," RSC Advances, vol. 6, pp. 84500-84504, 2016. [24] Z.-Y. Yang, Y.-H. Chen, B.-H. Liao, and K.-P. Chen, "Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering," Optical Materials Express, vol. 6, pp. 540-551, 2016. [25] M.-Y. Lu, C.-Y. Tsai, H.-A. Chen, Y.-T. Liang, K.-P. Chen, S. Gradečak, et al., "Plasmonic enhancement of Au nanoparticle—embedded single-crystalline ZnO nanowire dye-sensitized solar cells," Nano Energy, vol. 20, pp. 264-271, 2016. [26] K.-P. Chen, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, "Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals," Optics Express, vol. 24, pp. 16815-16821, 2016. [27] C.-Y. Chang, Y.-H. Chen, Y.-L. Tsai, H.-C. Kuo, and K.-P. Chen, "Tunability and optimization of coupling efficiency in tamm plasmon modes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, pp. 262-267, 2015. [28] Y.-H. Chen, K.-P. Chen, M.-H. Shih, and C.-Y. Chang, "Observation of the high-sensitivity plasmonic dipolar antibonding mode of gold nanoantennas in evanescent waves," Applied Physics Letters, vol. 105, p. 031117, 2014. [29] Z.-Y. Yang and K.-P. Chen, "Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas," Optics Express, vol. 22, pp. 12737-12749, 2014. [30] A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, "Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion," Sensors, vol. 11, pp. 7178-7187, 2011. [31] S. Ishii, A. V. Kildishev, V. M. Shalaev, K.-P. Chen, and V. P. Drachev, "Metal nanoslit lenses with polarization-selective design," Optics Letters, vol. 36, pp. 451-453, 2011. [32] K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, "Drude relaxation rate in grained gold nanoantennas," Nano Letters, vol. 10, pp. 916-922, 2010. [33] W. Chen, K. Chen, M. D. Thoreson, A. Kildishev, and V. M. Shalaev, "Ultrathin, ultrasmooth, and low-loss silver films via wetting and annealing," Applied Physics Letters, vol. 97, p. 211107, 2010. [34] Z. Liu, K.-P. Chen, X. Ni, V. P. Drachev, V. M. Shalaev, and A. V. Kildishev, "Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence," Journal of the Optical Society of America B, vol. 27, pp. 2465-2470, 2010. [35] X. Wang, K.-p. Chen, M. Zhao, and D. D. Nolte, "Refractive index and dielectric constant evolution of ultra-thin gold from clusters to films," Optics Express, vol. 18, pp. 24859-24867, 2010. [36] J. Borneman, K.-P. Chen, A. Kildishev, and V. Shalaev, "Simplified model for periodic nanoantennae: linear model and inverse design," Optics Express, vol. 17, pp. 11607-11617, 2009. [37] C.-W. Lin, K.-P. Chen, C.-N. Hsiao, S. Lin, and C.-K. Lee, "Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor," Sensors and Actuators B: Chemical, vol. 113, pp. 169-176, 2006. [38] C.-W. Lin, K.-P. Chen, M.-C. Su, C.-K. Lee, and C.-C. Yang, "Bio-plasmonics: nano/micro structure of surface plasmon resonance devices for biomedicine," Optical and Quantum Electronics, vol. 37, pp. 1423-1437, 2005. [39] C.-W. Lin, K.-P. Chen, M.-C. Su, T.-C. Hsiao, S.-S. Lee, S. Lin, et al., "Admittance loci design method for multilayer surface plasmon resonance devices," Sensors and Actuators B: Chemical, vol. 117, pp. 219-229, 2006. [40] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles: John Wiley & Sons, 2008. [41] M. Kerker, D.-S. Wang, and C. Giles, "Electromagnetic scattering by magnetic spheres," Journal of the Optical Society of America, vol. 73, pp. 765-767, 1983. [42] J. Ouellette, "Seeing the future in photonic crystals," The Industrial Physicist, vol. 7, pp. 14-17, 2001. [43] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light: Princeton university press, 2011. [44] R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E, vol. 70, p. 046608, 2004. [45] B. T. Schwartz and R. Piestun, "Total external reflection from metamaterials with ultralow refractive index," Journal of the Optical Society of America B, vol. 20, pp. 2448-2453, 2003. [46] M. Silveirinha and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Physical review letters, vol. 97, p. 157403, 2006. [47] A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, vol. 75, p. 155410, 2007. [48] D. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. Kuhta, et al., "Funneling light through a subwavelength aperture with epsilon-near-zero materials," Physical Review Letters, vol. 107, p. 133901, 2011. [49] E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, "Experimental verification of n= 0 structures for visible light," Physical Review Letters, vol. 110, p. 013902, 2013. [50] J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, et al., "Role of epsilon-near-zero substrates in the optical response of plasmonic antennas," Optica, vol. 3, pp. 339-346, 2016. [51] N. Engheta, "Pursuing near-zero response," Science, vol. 340, pp. 286-287, 2013. [52] S. A. Schulz, A. A. Tahir, M. Z. Alam, J. Upham, I. De Leon, and R. W. Boyd, "Optical response of dipole antennas on an epsilon-near-zero substrate," Physical Review A, vol. 93, p. 063846, 2016. [53] C. DeVault, V. Zenin, A. Pors, J. Kim, K. Chaudhuri, S. Bozhevolnyi, et al., "Plasmonic Antenna Resonance Pinning and Suppression of Near-Field Coupling from Epsilon-Near-Zero Substrate," in CLEO: QELS_Fundamental Science, 2017, p. FTu4H. 5. [54] G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, et al., "Anisotropic plasmonic sensing of individual or coupled gold nanorods," The Journal of Physical Chemistry C, vol. 115, pp. 22877-22885, 2011. [55] M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, "Nonlinear plasmonic sensing," Nano Letters, vol. 16, pp. 3155-3159, 2016. [56] A. Tittl, C. Kremers, J. Dorfmüller, D. N. Chigrin, and H. Giessen, "Spectral shifts in optical nanoantenna-enhanced hydrogen sensors," Optical Materials Express, vol. 2, pp. 111-118, 2012. [57] 李正中, 薄膜光學與鍍膜技術 , 第七版. 新北市: 藝軒圖書出版社, 2012
|