(54.236.58.220) 您好!臺灣時間:2021/02/28 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:牟育廷
研究生(外文):Mou,Yu-Ting
論文名稱:二維磁力控制掃描式光學顯微鏡
論文名稱(外文):Two-dimensional electromagnetically actuated scanning optical fluorescence microscope
指導教授:胡博琛
指導教授(外文):Hu,Po-Sheng
口試委員:蔡懷楨曾盛豪
口試委員(外文):Tsai,Huai-JenTseng,Sheng-Hao
口試日期:2017-10-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:影像與生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:51
中文關鍵詞:二維磁力掃描顯微鏡
外文關鍵詞:Two-dimensionalelectromagneticallyscanningmicroscope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,設計了二維磁力控制掃描式光學顯微鏡,同時呈現其特性與磁力驅動模型。本次研究透過浸塗沉積將鎳粉塗佈在多模光纖上,塗佈長度為5公分、厚度為118微米。並對此光纖進行動態特性模擬,且將理論值與實際值做出比較。同時,證明能夠在13.3Hz的頻率下進行動態移動400um並且具有1535H / A磁場強度的鎳膜包覆的多模光纖,其中多模光纖探針長度為6.9cm、自然諧振頻率為12.1Hz,也確定了在92〜105 mHz的低頻範圍內平均動態掃描幅度為400um。接著使用兩個電磁鐵當作驅動源,並將其高度放置在不同的位置且彼此正交(X軸、Y軸),由於頻率上的不同將可掃描出二維螢光影像。樣本與標的物使用螢光片並疊上分辨率校正片、含有生物相容性螢光染料的玻璃微米針尖進行影像上的校準,及觀察其成像能力。最後,將生物相容性螢光染劑注射至斑馬魚血管中,觀測螢光染劑在血液循環中的時間和空間分布。
In this research, a 2D electromagnetically actuated optical fluorescence microscopy is designed, characterized and evaluated. Specifically, a 5 cm-long, 118 micrometer-thick nickel films were coated on multi-mode optic fiber through dip-coating deposition, and magnetomechanical properties of the fiber optic device were characterized dynamically, and compared with theoretical calculation. Nickel film-coated optic fiber capable of dynamic displacement of 400 μm at frequency of 13.3 Hz and the magnetic field strength of 1535 H/A has been demonstrated, while its fundamental-mode natural resonant frequency of the fiber optic scanner with length of 6.9 cm is 12.1 Hz,, respectively, and the averaged dynamic scanning breadth of 400 μm in a range of low frequency from 92 to 105 mHz was also confirmed. With two electromagnets positioned at different heights of the SM optical fiber orienting along two directional axes, X and Y, a two-dimensional scanning pattern can be traced out. Calibration and imaging capability of this this were carried out using resolution chart on top of fluorescent plate and microinjection of dextran, the biocompatible fluorescent dye, into the blood vessel of zebrafish to monitor temporal and spatial distribution of the fluorescent dye in the blood circulation.
Contents
摘要 I
Abstract II
Acknowledgements IV
Contents V
Figures Catalog VII
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Research purpose and motivation 2
1.3 Current state of the art 2
1.4 Organization of the thesis 4
Chapter 2 Basic Theory 5
2.1 Mechanics 5
2.1.1 Resonant frequency 5
2.2 Magnetism 9
2.2.1 Magnetic properties 9
2.2.2 Hysteresis 10
2.2.3 Hard and soft magnet 11
2.3 Magneto-mechanical actuation 14
2.3.1 Estimation of magnetic attraction force 14
2.3.2 Mechanical vibration 16
2.4 Fluorescence 18
Chapter 3 Instrument Architecture 20
3.1 optical system 20
3.2 Electromagnetically scanning system 21
3.3 System synchronization 25
3.4 Image reconstruction 27
Chapter 4 Experimental results 30
4.1 Sample preparation 30
4.1.1 Zebrafish Introduction 30
4.1.2 Magnetic characterization 32
4.2 2D Imaging calibration 36
Conclusion 44
Reference 45
Annex 47
[1] 2005 Hu Technology demonstration
[2] 2006 Hu Technology demonstration
[3] 2007 Praveen optical switch
[4] 2009 Inter j of optomechatronics Ni Fe Co
[5] 2011 Zhang FD-OCT magnetic driven resonant fiber cantilever 34fps
[6] 2009 Min single-body lensed fiber (lens is formed directly at the distal end of the fiber) and a solenoid . Ferromagnetic iron bead was glued onto the middle of the fiber. OCT images with 30 frames/s .Over a scanning range of 4mm operating at resonant frequency with post image processing
[7] 2011 Min 2D scanning probe driven by magnetic gradient of a single solenoid actuator
[8] 2011 Hendriks high resolution resonant and nonresonant polarization sensitive fiber-scanning confocal imaging on biological.
[9] 2013 Mansoor reflectance confocal imaging of fly wing and human colon tissue sample.
[10] Katsuhiko Ogata (2005). System Dynamics (4th ed.). University of Minnesota. p. 617.
[11] Ajoy Ghatak (2005). Optics, 3E (3rd ed.). Tata McGraw-Hill. p. 6.10. ISBN 978-0-07-058583-6.
[12] Galileo Galilei from the beginning of his study of pendulum in 1602.
[13] A. E. Siegman (1986). Lasers. University Science Books. pp. 105–108. ISBN 978-0-935702-11-8
[14] Aspelmeyer M.; et al. (2014). "Cavity optomechanics". Review of modern physics. p. 1397.
[15] Frederick Emmons Terman (1932). Radio Engineering. McGraw-Hill Book Company.
[16] William McC. Siebert (1986). Circuits, Signals, and Systems. MIT Press. p. 113. ISBN 978-0-262-19229-3.
[17] Phuyal, Pratibha C. 2006. Fiber Optic Scanner Using Electromagnetic Actuation With Different Ferromagnetic Materials. Thesis, The University of Texas at Arlington.
[18] Dhaubanjar, Naresh. 2006. The Design and Analysis of Optical Scanners for Optical Coherence Tomography. Thesis, The University of Texas at Arlington.
[19] Petersen, Kurt E. 2006. Dynamic micromechanics on silica: Techniques and devices. IEEE Transactions on Electron Devices 25(10):1241–1250.
[20] Young’s modulus of electroplated Ni thin film for MEMS applications J.K. Luoa,*, A.J. Flewitt a , S.M. Spearingb , N.A. Flecka , W.I. Milnea
[21] https://www.ansforce.com/post/S1-p363
[22] Chikazumi 1997
[23] L.W. Matsch, electromagnetic and electromechanical machines. New York, IEP-A Dun-Donnelley Publisher, 1977, pp. 23-27.
[24] A fully integrated surface MEMS with multilevel meander magnetic core
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔