|
1. T. Hübert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors-A review. Sensors and Actuators B, 2011. 157: p.329-352. 2. M. Simrén, P. Stotzer, Use and abuse of hydrogen breath tests. Gut, 2006. 55(3): p.297-303. 3. A. Yekbun, Breath sensors for lung cancer diagnosis. Biosensors and Bioelectronics, 2015. 65: p.121–138. 4. S. Woosuck, Medical applications of breath hydrogen measurements. Anal Bioanal Chem, 2014. 406: p.3931–3939. 5. H. Gu, Z. Wang, Y. Hu, Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors, 2012. 12: p.5517-5550. 6. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to?. Sensors and Actuators B, 2007. 121: p.18-35. 7. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 2010. 10: p.2088-2106. 8. J. S. Wright, W. Lim, D. P. Norton, S. J. Pearton, F. Ren, J. L. Johnson, A. Ural, Nitride and oxide semiconductor nanostructured hydrogen gas sensors. Semicond. Sci. Technol., 2010. 25:p.024002. 9. Karin Potje-Kamloth, Semiconductor Junction Gas Sensors. Chem. Rev., 2008. 108:p.367-399. 10. J. W. Han, T. Rim, C. K. Baek, M. Meyyappan, Chemical Gated Field-Effect Transistor by Hybrid Integration of One Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor. ACS, Appl. Mater. Interfaces, 2015. 7: p.21263-21269. 11. M. T. Azar, B. Sutapun, R. Petrick, A. Kazemi, Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions. Sensors and Actuators B, 1999. 56: p.158-163. 12. W. P. Jakubik, M. W. Urbanczyk, S. Kochowski, J. Bodzenta, Bilayer structure for hydrogen detection in a surface acoustic wave sensor system. Sensors and Actuators B, 2002. 82: p.265-271. 13. I. Lundstrom, S. Shivaraman, C. Svensson, L. Lunkvist, A hydrogen-sensitive MOS field-effect transistor. ACS, Appl. Phys. Lett., 1975. 26(2): p.55-56. 14. I. Lundström, T. DiStefano, Influence of hydrogen on Pt- SiO2- Si structures. Solid State Communications, 1976. 19(9): p.871-875. 15. M. Anton, B. Büdy, The influence of rhodium on SnO2 CO gas sensor. Sensors and Actuators B: Chemical, 1994. 19(1): p.500-501. 16. T. Usagawa, Y. Kikuchi, A Pt–Ti–O gate Si-metal-insulator-semiconductor field-effect transistor hydrogen gas sensor. Journal of Applied Physics, 2010. 108(7): p.074909. 17. A. Karthigeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, M. Zimmer, T. Sulima, S. Venkataraj, S. K. Sharma, I. Eisele, Iridium oxide as low temperature NO2-sensitive material for work function-based gas sensors. Sensors Journal, IEEE, 2004. 4(2): p.189-194. 18. L. Liao, Z. Zhang1, B. Yan1, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology, 2009. 20(8): p. 85-203. 19. S. J. Pearton, F. Ren, Yu-Lin Wang, B. N. Chu, K. H. Chen, C. Y. Chang, W. Lim, J. Lin, D. P. Norton. Recent advances in wide bandgap semiconductor biological and gas sensors. Progress in Materials Science, 2010. 55: p.1-59. 20. P. Offermans, H. D. Tong, C. J. M. van Rijn, P. Merken, S. H. Brongersma, M. Crego-Calama. Ultralow-power hydrogen sensing with single palladium nanowires. Appl. Phys. Lett., 2009. 94: p.223110. 21. J. H. Ahn, J. Yun, D. I. Moon, Y. K. Choi, I. Park. Self-heated silicon nanowires for high performance hydrogen gas detection. Nanotechnology, 2015. 26: p.095501. 22. R. Loloee, B. Chorpening, S. Beer, R. N. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors. Sensors and Actuators B: Chemical, 2008. 129(1): p.200-210. 23. J. Song, W. Lu, Operation of Pt/AlGaN/GaN-heterojunction field-effect-transistor hydrogen sensors with low detection limit and high sensitivity. Electron Device Letters, IEEE, 2008. 29(11): p.1193-1195. 24. Y. H. Lin, Y. C. Hsueh, P. S. Lee, C. C. Wang, J. M. Wu, T. P. Pernga, H. C. Shih, Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum. J. Mater. Chem., 2011. 21: p.10552-10558. 25. Y. Cui, Q. Wei, H. Park, C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 2011. 293: p.1289. 26. C. M. Lieber, G. Zheng, F. Patolsky, Y. Cui1, W. U. Wang, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol, 2005. 23: p.1294-1301. 27. J. Hahm, C. M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett., 2004. 4: p.51-54. 28. I. Park, Z. Li, A. P. Pisano, R. S. Williams, Selective surface functionalization of silicon nanowires via nanoscale Joule heating. Nano Lett., 2007. 7(10): p.3106-3111. 29. C. C. Chen, Y. S. Lin, C. H. Sang, J. T. Sheu, Localized Joule Heating As a Mask-Free Technique for the Local Synthesis of ZnO Nanowires on Silicon Nanodevices. Nano Lett., 2011. 11(11): p.4736-4741. 30. H. H. Liu, T. H. Lin, J.-T. Sheu, Self-Assembled Monolayer-Based Selective Modification on Polysilicon Nanobelt Devices. ACS Appl. Mater. Interfaces, 2013. 5(20): p.10048-10053. 31. G. Zhang, Q. X. Zhang, D. Kavitha, G. Q. Lo, Time dependent thermoelectric performance of a bundle of silicon nanowires for on-chip cooler applications. Appl. Phys. Lett., 2009. 95(24): p.243104.1- 243104.3. 32. G. Zhang, Q. Zhang, C. T. Bui, G. Q. Lo, B. Li, Thermoelectric performance of silicon nanowires. Appl. Phys. Lett., 2009. 94(21): p.213108.1-213108.3. 33. A. Evgrafov, K. Maute1, R. G. Yang, M. L. Dunn, Topology optimization for nano‐scale heat transfer. International Journal for Numerical Methods in Engineering, 2009. 77(2): p.285-300. 34. O. H. Elibol, B. R. Jr, R. Bashir, Localized heating and thermal characterization of high electrical resistivity silicon-on-insulator sensors using nematic liquid crystals. Appl. Phys. Lett., 2008. 93(13): p.131908.1-131908.3. 35. K. Nagato, Y. Kojima, K. Kasuya, H. Moritani, T. Hamaguchi, M. Nakao, Local synthesis of tungsten oxide nanowires by current heating of designed micropatterned wires. Appl. Phys. Express, 2008. 1(1): p.014005.1-014005.4. 36. A. Yoon, W.-K. Hong, T. Lee, Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics. Journal of Nanoscience and Nanotechnology, 2007. 7(11): p.4101-4105. 37. H. Fangohr, D. S. Chernyshenko, M. Franchin, T. Fischbacher, G. Meier, Joule heating in nanowires. Physical Review B, 2011. 84(5): p.054437.1-054437.14. 38. J. Jie, W. Zhang, K. Peng, G. Yuan, C. S. Lee, S. T. Lee. Surface-Dominated Transport Properties of Silicon Nanowires. Advanced Functional Materials, 2008. 18: p.3251–3257. 39. T. Kiefer, F. Favier, O. Vazquez-Mena, G. Villanueva, J. Brugger. A Single Nanotrench in a Palladium Microwire for Hydrogen Detection. Nanotechnology, 2008. 19: p.125502. 40. F. Yang, David K. Taggart, Reginald M. Penner. Fast, Sensitive Hydrogen Gas Detection Using Single Palladium Nanowires That Resist Fracture. ACS Nano. Lett., 2009. 9(5): p. 2177–2182. 41. F. Yang, S. C. Kung, M. Cheng, John C. Hemminger, Reginald M. Penner. Smaller Is Faster and More Sensitive: The Effect of Wire Size on the Detection of Hydrogen by Single Palladium Nanowires. ACS Nano, 2010. 4(9):p.5233–5244. 42. T. Xu, M. T. Zach, Z. L. Xiao, D. Rosenmann, U, Welp, W. K. Kwok, G. W. Crabtree. Self-Assembled Monolayer Enhanced Hydrogen Sensing with Ultrathin Palladium Films. Appl. Phys. Lett., 2005. 86:p.203104 43. B. Choi, J. H. Ahn, J. Lee, J. Yoon, J. Lee, M. Jeon, D. M. Kim, D. H. Kim, I. Park, S. J. Choi. A bottom-gate silicon nanowire field-effect transistor with functionalize palladium nanoparticles for hydrogen gas sensors. Solid-State Electronics, 2015. 144:p.76-79.
|