跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/11 14:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾久育
研究生(外文):Tseng, Chiu-Yu
論文名稱:選擇性沉積鈀奈米結構於極薄矽奈米帶元件之氫氣感測器研究
論文名稱(外文):Hydrogen Sensors from Ultra-thin Si Nanobelt devices with Selective Modifications of Palladium via Nanoscale Joule Heating
指導教授:許鉦宗
指導教授(外文):Sheu, Jeng-Tzong
口試委員:李博仁李耀坤潘扶民
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:63
中文關鍵詞:氣體感測器氫氣奈米帶元件
外文關鍵詞:gas sensorhydrogennanobelt device
相關次數:
  • 被引用被引用:1
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究不僅運用焦耳熱效應選擇性沉積鈀金屬 (Palladium) 於極薄矽奈米帶元件上做為氫氣感測器使用;也成功地利用焦耳熱效應進行極薄矽奈米帶自我加熱 (self-heating),並同時在此狀況下即時地測量不同濃度的氫氣。透過厚度為10 nm的極薄矽奈米帶元件設計以及高低濃度摻雜 (n+/n-/n+)的設計,可以精準的控制焦耳熱放熱區域 (低摻雜區),也可以使對閘極電位變化靈敏的低濃度摻雜區域對感測氣體的能力得到更進一步提升。接著應用 COMSOL多重物理偶合模擬 self-heating時極薄矽奈米帶的表面溫度分布,與供給不同電壓下,聚甲基丙烯酸甲酯 (Polymethylmethacrylate,簡稱PMMA)光阻燒除的情形相互驗證。將製備好的元件置於利用聚二甲基矽氧烷 (Polydimethylsiloxane,簡稱PDMS)製作的小腔體中進行氫氣感測,比較不同厚度的氮化矽水氣阻擋層對氫氣的感測影響,比較不同厚度的鈀金屬偵測氫氣的效率,也比較不同操作電壓下所產生的self-heating效應對氫氣感測的影響,篩選出最佳的氫氣感測器製備條件以及操作條件,使其在大氣中可以靈敏地偵測到濃度為1 ppm的氫氣。我們相信結合極薄矽奈米帶元件以及高低濃度摻雜的這兩項設計,可大幅提升元件對氣體的感測能力,而利用焦耳熱效應技術製備的氫氣感測器可以提升元件在室溫下的應用以及氣體偵測的準確性,並預期此技術對臨床即時人體呼吸氫氣測試以及工業危險氣體洩漏安全檢測有重大的幫助。
In this study, we report the experimental results of selective deposition of Palladium (Pd) via localized Joule heating (JH) on C-Si ultra-thin nanobelt devices as real-time hydrogen sensors. The thickness of ultra-thin nanobelt devices were scaled down to 10 nm, which makes device very sensitive to the surface potential change. The active channels of ultra-thin nanobelt devices were consisted of n+/n-/n+ structure, and localized joule heating is occurred mainly at local high resistance n- region such that a PMMA (Polymethylmethacrylate) nanotemplate can be formed via JH. The surface temperature was estimated by COMSOL simulations at various biases. AFM was used to investigate the morphology of n- region where the PMMA is ablated at various conditions. Devices with selective deposition of Pd at the n- region were then placed in a small PDMS (Polydimethylsiloxane)chamber for hydrogen detection. The impact of different thicknesses of Si3N4 atop device channel was compared on hydrogen sensing so that a optimized thickness was adopted to prevent attack from humidity. The thickness of Pd was also investigated via hydrogen sensing. Furthermore, several self-heating voltages were compared for the best response in hydrogen sensing. The detection limit under atmosphere is about 1 ppm.
中文摘要...........................................I
ABSTRACT..........................................II
目錄..............................................IV
圖目錄.............................................VI
表目錄.............................................Ⅸ
公式目錄...........................................Ⅹ
第一章.............................................1
1-1 前言...........................................1
1-2 電子鼻簡介......................................3
1-3 氫氣特性簡介....................................5
1-4 氫氣檢測........................................6
1-5 氫氣感測器簡介...................................8
1-5-1 電阻式氣體感測器 (Resistance-Based)............9
1-5-2 公函數式氣體感測器 (Work Function-Based)......11
1-5-3 光學式氣體感測器 (Optical Sensor).............12
1-5-4 聲學式氣體感測器 (Acoustic Sensors)...........13
1-6 電晶體式氣體感測器..............................14
1-7 矽奈米線場效電晶體感測器.........................17
1-8 利用焦耳熱做選擇性修飾...........................18
1-9 利用焦耳熱作選擇性修飾之生醫感測應用..............20
1-10 焦耳熱模擬相關研究..............................23
1-11 實驗動機與架構.................................25
第二章.............................................26
2-1 電阻式奈米單晶矽NANOBELT元件製作流程.............26
2-2 感測區氮化矽加厚沉積降低水氣對電阻式NANOBELT矽奈米元件的影響 ...................................................30
2-3 焦耳熱效應模擬..................................32
2-3-1 COMSOL模擬...................................32
2-3-2 電阻式 Nanobelt 矽奈米元件外部加熱之溫度模擬....33
2-3-3 COMSOL模擬與外部加熱模擬之比較................34
2-4 焦耳熱效應輔助選擇性沉積鈀金屬薄膜................36
2-5 濺鍍鈀金屬......................................37
2-6 矽奈米元件量測..................................37
2-6-1電性量測系統...................................37
2-6-2 PDMS小腔體製作................................38
第三章..............................................40
3-1 焦耳熱效應模擬之驗證.............................40
3-2 選擇性沉積鈀金屬薄膜及其驗證......................41
3-3 本研究使用之元件優勢.............................43
3-4 感測機制........................................45
3-4-1 感測機制之能帶解釋.............................45
3-4-2 感測機制之電子耦合效應解釋......................47
3-5 以鈀金屬為感測材料之氣體感測器對氫氣之電性量測......48
3-5-1 比較未修飾鈀金屬之元件對氫氣感測特性 (I-t curve).48
3-5-2 比較氮化矽沉積厚度不同對氫氣感測特性的影響........50
3-5-3 比較鈀金屬 (Pd)沉積厚度不同對氫氣感測特性的影響...51
3-5-4 比較焦耳熱效應對氫氣感測特性的影響...............53
3-5-5 偵測不同濃度的氫氣..............................55
3-5-6 修飾鈀金屬之氣體感測器比較.......................58
第四章...............................................59
4-1 結論.............................................59
4-2 未來展望.........................................59
參考文獻.............................................61
1. T. Hübert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors-A review. Sensors and Actuators B, 2011. 157: p.329-352.
2. M. Simrén, P. Stotzer, Use and abuse of hydrogen breath tests. Gut, 2006. 55(3): p.297-303.
3. A. Yekbun, Breath sensors for lung cancer diagnosis. Biosensors and Bioelectronics, 2015. 65: p.121–138.
4. S. Woosuck, Medical applications of breath hydrogen measurements. Anal Bioanal Chem, 2014. 406: p.3931–3939.
5. H. Gu, Z. Wang, Y. Hu, Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors, 2012. 12: p.5517-5550.
6. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to?. Sensors and Actuators B, 2007. 121: p.18-35.
7. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 2010. 10: p.2088-2106.
8. J. S. Wright, W. Lim, D. P. Norton, S. J. Pearton, F. Ren, J. L. Johnson, A. Ural, Nitride and oxide semiconductor nanostructured hydrogen gas sensors. Semicond. Sci. Technol., 2010. 25:p.024002.
9. Karin Potje-Kamloth, Semiconductor Junction Gas Sensors. Chem. Rev., 2008. 108:p.367-399.
10. J. W. Han, T. Rim, C. K. Baek, M. Meyyappan, Chemical Gated Field-Effect Transistor by Hybrid Integration of One Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor. ACS, Appl. Mater. Interfaces, 2015. 7: p.21263-21269.
11. M. T. Azar, B. Sutapun, R. Petrick, A. Kazemi, Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions. Sensors and Actuators B, 1999. 56: p.158-163.
12. W. P. Jakubik, M. W. Urbanczyk, S. Kochowski, J. Bodzenta, Bilayer structure for hydrogen detection in a surface acoustic wave sensor system. Sensors and Actuators B, 2002. 82: p.265-271.
13. I. Lundstrom, S. Shivaraman, C. Svensson, L. Lunkvist, A hydrogen-sensitive MOS field-effect transistor. ACS, Appl. Phys. Lett., 1975. 26(2): p.55-56.
14. I. Lundström, T. DiStefano, Influence of hydrogen on Pt- SiO2- Si structures. Solid State Communications, 1976. 19(9): p.871-875.
15. M. Anton, B. Büdy, The influence of rhodium on SnO2 CO gas sensor. Sensors and Actuators B: Chemical, 1994. 19(1): p.500-501.
16. T. Usagawa, Y. Kikuchi, A Pt–Ti–O gate Si-metal-insulator-semiconductor field-effect transistor hydrogen gas sensor. Journal of Applied Physics, 2010. 108(7): p.074909.
17. A. Karthigeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, M. Zimmer, T. Sulima, S. Venkataraj, S. K. Sharma, I. Eisele, Iridium oxide as low temperature NO2-sensitive material for work function-based gas sensors. Sensors Journal, IEEE, 2004. 4(2): p.189-194.
18. L. Liao, Z. Zhang1, B. Yan1, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology, 2009. 20(8): p. 85-203.
19. S. J. Pearton, F. Ren, Yu-Lin Wang, B. N. Chu, K. H. Chen, C. Y. Chang, W. Lim, J. Lin, D. P. Norton. Recent advances in wide bandgap semiconductor biological and gas sensors. Progress in Materials Science, 2010. 55: p.1-59.
20. P. Offermans, H. D. Tong, C. J. M. van Rijn, P. Merken, S. H. Brongersma, M. Crego-Calama. Ultralow-power hydrogen sensing with single palladium nanowires. Appl. Phys. Lett., 2009. 94: p.223110.
21. J. H. Ahn, J. Yun, D. I. Moon, Y. K. Choi, I. Park. Self-heated silicon nanowires for high performance hydrogen gas detection. Nanotechnology, 2015. 26: p.095501.
22. R. Loloee, B. Chorpening, S. Beer, R. N. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors. Sensors and Actuators B: Chemical, 2008. 129(1): p.200-210.
23. J. Song, W. Lu, Operation of Pt/AlGaN/GaN-heterojunction field-effect-transistor hydrogen sensors with low detection limit and high sensitivity. Electron Device Letters, IEEE, 2008. 29(11): p.1193-1195.
24. Y. H. Lin, Y. C. Hsueh, P. S. Lee, C. C. Wang, J. M. Wu, T. P. Pernga, H. C. Shih, Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum. J. Mater. Chem., 2011. 21: p.10552-10558.
25. Y. Cui, Q. Wei, H. Park, C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 2011. 293: p.1289.
26. C. M. Lieber, G. Zheng, F. Patolsky, Y. Cui1, W. U. Wang, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol, 2005. 23: p.1294-1301.
27. J. Hahm, C. M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett., 2004. 4: p.51-54.
28. I. Park, Z. Li, A. P. Pisano, R. S. Williams, Selective surface functionalization of silicon nanowires via nanoscale Joule heating. Nano Lett., 2007. 7(10): p.3106-3111.
29. C. C. Chen, Y. S. Lin, C. H. Sang, J. T. Sheu, Localized Joule Heating As a Mask-Free Technique for the Local Synthesis of ZnO Nanowires on Silicon Nanodevices. Nano Lett., 2011. 11(11): p.4736-4741.
30. H. H. Liu, T. H. Lin, J.-T. Sheu, Self-Assembled Monolayer-Based Selective Modification on Polysilicon Nanobelt Devices. ACS Appl. Mater. Interfaces, 2013. 5(20): p.10048-10053.
31. G. Zhang, Q. X. Zhang, D. Kavitha, G. Q. Lo, Time dependent thermoelectric performance of a bundle of silicon nanowires for on-chip cooler applications. Appl. Phys. Lett., 2009. 95(24): p.243104.1- 243104.3.
32. G. Zhang, Q. Zhang, C. T. Bui, G. Q. Lo, B. Li, Thermoelectric performance of silicon nanowires. Appl. Phys. Lett., 2009. 94(21): p.213108.1-213108.3.
33. A. Evgrafov, K. Maute1, R. G. Yang, M. L. Dunn, Topology optimization for nano‐scale heat transfer. International Journal for Numerical Methods in Engineering, 2009. 77(2): p.285-300.
34. O. H. Elibol, B. R. Jr, R. Bashir, Localized heating and thermal characterization of high electrical resistivity silicon-on-insulator sensors using nematic liquid crystals. Appl. Phys. Lett., 2008. 93(13): p.131908.1-131908.3.
35. K. Nagato, Y. Kojima, K. Kasuya, H. Moritani, T. Hamaguchi, M. Nakao, Local synthesis of tungsten oxide nanowires by current heating of designed micropatterned wires. Appl. Phys. Express, 2008. 1(1): p.014005.1-014005.4.
36. A. Yoon, W.-K. Hong, T. Lee, Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics. Journal of Nanoscience and Nanotechnology, 2007. 7(11): p.4101-4105.
37. H. Fangohr, D. S. Chernyshenko, M. Franchin, T. Fischbacher, G. Meier, Joule heating in nanowires. Physical Review B, 2011. 84(5): p.054437.1-054437.14.
38. J. Jie, W. Zhang, K. Peng, G. Yuan, C. S. Lee, S. T. Lee. Surface-Dominated Transport Properties of Silicon Nanowires. Advanced Functional Materials, 2008. 18: p.3251–3257.
39. T. Kiefer, F. Favier, O. Vazquez-Mena, G. Villanueva, J. Brugger. A Single Nanotrench in a Palladium Microwire for Hydrogen Detection. Nanotechnology, 2008. 19: p.125502.
40. F. Yang, David K. Taggart, Reginald M. Penner. Fast, Sensitive Hydrogen Gas Detection Using Single Palladium Nanowires That Resist Fracture. ACS Nano. Lett., 2009. 9(5): p. 2177–2182.
41. F. Yang, S. C. Kung, M. Cheng, John C. Hemminger, Reginald M. Penner. Smaller Is Faster and More Sensitive: The Effect of Wire Size on the Detection of Hydrogen by Single Palladium Nanowires. ACS Nano, 2010. 4(9):p.5233–5244.
42. T. Xu, M. T. Zach, Z. L. Xiao, D. Rosenmann, U, Welp, W. K. Kwok, G. W. Crabtree. Self-Assembled Monolayer Enhanced Hydrogen Sensing with Ultrathin Palladium Films. Appl. Phys. Lett., 2005. 86:p.203104
43. B. Choi, J. H. Ahn, J. Lee, J. Yoon, J. Lee, M. Jeon, D. M. Kim, D. H. Kim, I. Park, S. J. Choi. A bottom-gate silicon nanowire field-effect transistor with functionalize palladium nanoparticles for hydrogen gas sensors. Solid-State Electronics, 2015. 144:p.76-79.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top