|
. [1] S. Sadigh-Eteghad, B. Sabermarouf, A. Majdi, M. Talebi, M. Farhoudi, and J. Mahmoudi, “Amyloid-beta: a crucial factor in alzheimer’s disease,” Medical principles and practice, vol. 24, no. 1, pp. 1–10, 2015.
. [2] C. Qiu, M. Kivipelto, and E. von Strauss, “Epidemiology of alzheimer’s disease: oc- currence, determinants, and strategies toward intervention,” Dialogues in clinical neuro- science, vol. 11, no. 2, p. 111, 2009.
. [3] K. J. Anstey, N. Cherbuin, P. M. Herath, C. Qiu, L. H. Kuller, O. L. Lopez, R. S. Wilson, and L. Fratiglioni, “A self-report risk index to predict occurrence of dementia in three independent cohorts of older adults: the anu-adri,” PLoS One, vol. 9, no. 1, p. e86141, 2014.
. [4] A. Nordberg, “Amyloid plaque imaging in vivo: current achievement and future prospects,” European journal of nuclear medicine and molecular imaging, vol. 35, no. 1, pp. 46–50, 2008.
. [5] D. J. Selkoe, “Alzheimer9s disease: Genes, proteins, and therapy,” Physiological reviews, vol. 81, no. 2, pp. 741–766, 2001.
. [6] D. J. Selkoe, “Cell biology of protein misfolding: the examples of alzheimer’s and parkin- son’s diseases,” Nature cell biology, vol. 6, no. 11, pp. 1054–1061, 2004.
. [7] J. Davis and W. E. Van Nostrand, “Enhanced pathologic properties of dutch-type mutant amyloid beta-protein,” Proceedings of the National Academy of Sciences, vol. 93, no. 7, pp. 2996–3000, 1996.
. [8] K. Murakami, K. Irie, A. Morimoto, H. Ohigashi, M. Shindo, M. Nagao, T. Shimizu, and T. Shirasawa, “Neurotoxicity and physicochemical properties of aβ mutant peptides from cerebral amyloid angiopathy implication for the pathogenesis of cerebral amyloid angiopathy and alzheimer’s disease,” Journal of Biological Chemistry, vol. 278, no. 46, pp. 46 179–46 187, 2003. . [9] A.D.International,WorldAlzheimerreport2010:theglobaleconomicimpactofdementia. Alzheimer’s Disease International, 2010.
. [10] L.M.Luheshi,G.G.Tartaglia,A.-C.Brorsson,A.P.Pawar,I.E.Watson,F.Chiti,M.Ven- druscolo, D. A. Lomas, C. M. Dobson, and D. C. Crowther, “Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity,” PLoS biology, vol. 5, no. 11, p. e290, 2007.
. [11] L. Glodzik, S. de Santi, W. H. Tsui, L. Mosconi, R. Zinkowski, E. Pirraglia, H. Y. Wang, Y. Li, K. E. Rich, H. Zetterberg et al., “Phosphorylated tau 231, memory decline and medial temporal atrophy in normal elders,” Neurobiology of aging, vol. 32, no. 12, pp. 2131–2141, 2011.
. [12] A. M. Fjell, I. K. Amlien, L. T. Westlye, V. Stenset, T. Fladby, A. Skinningsrud, D. E. Eilsertsen, A. Bjørnerud, and K. B. Walhovd, “Csf biomarker pathology correlates with a medial temporo-parietal network affected by very mild to moderate alzheimer’s disease but not a fronto-striatal network affected by healthy aging,” Neuroimage, vol. 49, no. 2, pp. 1820–1830, 2010.
. [13] A. M. Fjell, K. B. Walhovd, C. Fennema-Notestine, L. K. McEvoy, D. J. Hagler, D. Hol- land, K. Blennow, J. B. Brewer, A. M. Dale, and A. D. N. Initiative, “Brain atrophy in healthy aging is related to csf levels of aβ1-42,” Cerebral Cortex, vol. 20, no. 9, pp. 2069– 2079, 2010.
. [14] C. Mulder, N. A. Verwey, W. M. van der Flier, F. H. Bouwman, A. Kok, E. J. van Elk, P. Scheltens, and M. A. Blankenstein, “Amyloid-β (1–42), total tau, and phosphorylated tau as cerebrospinal fluid biomarkers for the diagnosis of alzheimer disease,” Clinical chemistry, vol. 56, no. 2, pp. 248–253, 2010.
. [15] S. Engelborghs, K. Maertens, E. Vloeberghs, T. Aerts, N. Somers, P. Mariën, and P. P. De Deyn, “Neuropsychological and behavioural correlates of csf biomarkers in dementia,” Neurochemistry international, vol. 48, no. 4, pp. 286–295, 2006.
. [16] G. De Meyer, F. Shapiro, H. Vanderstichele, E. Vanmechelen, S. Engelborghs, P. P. De Deyn, E. Coart, O. Hansson, L. Minthon, H. Zetterberg et al., “Diagnosis-independent alzheimer disease biomarker signature in cognitively normal elderly people,” Archives of neurology, vol. 67, no. 8, pp. 949–956, 2010.
. [17] H.Hampel,K.Blennow,L.M.Shaw,Y.C.Hoessler,H.Zetterberg,andJ.Q.Trojanowski, “Total and phosphorylated tau protein as biological markers of alzheimer’s disease,” Ex- perimental gerontology, vol. 45, no. 1, pp. 30–40, 2010.
. [18] M. Bibl, B. Mollenhauer, P. Lewczuk, H. Esselmann, S. Wolf, C. Trenkwalder, M. Otto, G. Stiens, E. Rüther, J. Kornhuber et al., “Validation of amyloid-β peptides in csf diagnosis of neurodegenerative dementias,” Molecular psychiatry, vol. 12, no. 7, pp. 671–680, 2007.
. [19] A. M. Fagan, C. M. Roe, C. Xiong, M. A. Mintun, J. C. Morris, and D. M. Holtzman, “Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nonde- mented older adults,” Archives of neurology, vol. 64, no. 3, pp. 343–349, 2007.
. [20] A. M. Fagan, D. Head, A. R. Shah, D. Marcus, M. Mintun, J. C. Morris, and D. M. Holtz- man, “Decreased cerebrospinal fluid aβ42 correlates with brain atrophy in cognitively nor- mal elderly,” Annals of neurology, vol. 65, no. 2, pp. 176–183, 2009.
. [21] J. V. Rushworth, A. Ahmed, H. H. Griffiths, N. M. Pollock, N. M. Hooper, and P. A. Millner, “A label-free electrical impedimetric biosensor for the specific detection of alzheimer’s amyloid-beta oligomers,” Biosensors and Bioelectronics, vol. 56, pp. 83–90, 2014.
. [22] M. Chikae, T. Fukuda, K. Kerman, K. Idegami, Y. Miura, and E. Tamiya, “Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode,” Bioelec- trochemistry, vol. 74, no. 1, pp. 118–123, 2008.
. [23] M. Flirski and T. Sobow, “Biochemical markers and risk factors of alzheimer’s disease,” Current Alzheimer Research, vol. 2, no. 1, pp. 47–64, 2005.
. [24] B. R. Fluharty, E. Biasini, M. Stravalaci, A. Sclip, L. Diomede, C. Balducci, P. La Vitola, M. Messa, L. Colombo, G. Forloni et al., “An n-terminal fragment of the prion protein binds to amyloid-β oligomers and inhibits their neurotoxicity in vivo,” Journal of Biolog- ical Chemistry, vol. 288, no. 11, pp. 7857–7866, 2013.
. [25] O. V. Forlenza, B. S. Diniz, and W. F. Gattaz, “Diagnosis and biomarkers of predementia in alzheimer’s disease,” BMC medicine, vol. 8, no. 1, p. 89, 2010.
. [26] D.G.Georganopoulou,L.Chang,J.-M.Nam,C.S.Thaxton,E.J.Mufson,W.L.Klein,and C. A. Mirkin, “Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for alzheimer’s disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2273–2276, 2005.
. [27] T.E.Golde,C.B.Eckman,andS.G.Younkin,“Biochemicaldetectionofaβisoforms:im- plications for pathogenesis, diagnosis, and treatment of alzheimer’s disease,” Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1502, no. 1, pp. 172–187, 2000.
. [28] I. Grabowska, H. Radecka, A. Burza, J. Radecki, M. Kaliszan, and R. Kaliszan, “Asso- ciation constants of pyridine and piperidine alkaloids to amyloid ß peptide determined by electrochemical impedance spectroscopy,” Current Alzheimer Research, vol. 7, no. 2, pp. 165–172, 2010.
. [29] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: funda- mentals and applications. wiley New York, 1980, vol. 2.
. [30] R. Marshall and F. Walsh, “A review of some recent electrolytic cell designs,” Surface Technology, vol. 24, no. 1, pp. 45–77, 1985.
. [31] X. Yuan, H. Wang, J. C. Sun, and J. Zhang, “Ac impedance technique in pem fuel cell diagnosis —a review,” International Journal of Hydrogen Energy, vol. 32, no. 17, pp. 4365–4380, 2007.
. [32] G. Wang, L. Zhang, and J. Zhang, “A review of electrode materials for electrochemical supercapacitors,” Chemical Society Reviews, vol. 41, no. 2, pp. 797–828, 2012.
. [33] M. D. Stoller and R. S. Ruoff, “Best practice methods for determining an electrode mate- rial’s performance for ultracapacitors,” Energy & Environmental Science, vol. 3, no. 9, pp. 1294–1301, 2010.
. [34] J. Wang, Analytical electrochemistry. John Wiley & Sons, 2006.
. [35] S. Mulligan and P. Hull, “Design and optimisation of a water vortex hydropower plant,” Undergraduate thesis, Inst. of Tech. Sligo, Sligo, Ireland, 2010.
. [36] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2005.
. [37] V. Srinivasaraghavan and M. Agah, “Impedance sensing techniques for biomedical mi- crodevices,” 2015.
. [38] J.-J. Tsai, I.-J. Bau, H.-T. Chen, Y.-T. Lin, and G.-J. Wang, “A novel nanostructured biosensor for the detection of the dust mite antigen der p2,” International journal of nanomedicine, vol. 6, p. 1201, 2011.
. [39] Y.-T. Tung, M.-F. Wu, G.-J. Wang, and S.-L. Hsieh, “Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the clec5a receptor,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 10, no. 6, pp. 1335–1341, 2014.
. [40] J. L. Wilbur and G. M. Whitesides, “Self-assembly and self-assembled monolayers in micro-and nanofabrication,” Nanotechnology, pp. 331–370, 1999.
. [41] S. Jadhav, “Self-assembled monolayers (sams) of carboxylic acids: an overview,” Open Chemistry, vol. 9, no. 3, pp. 369–378, 2011.
. [42] C. Vericat, M. Vela, G. Benitez, P. Carro, and R. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chemical Society Reviews, vol. 39, no. 5, pp. 1805–1834, 2010.
. [43] A. Pakiari and Z. Jamshidi, “Nature and strength of m- s bonds (m= au, ag, and cu) in binary alloy gold clusters,” The Journal of Physical Chemistry A, vol. 114, no. 34, pp. 9212–9221, 2010.
. [44] L. H. Dubois and R. G. Nuzzo, “Synthesis, structure, and properties of model organic surfaces,” Annual review of physical chemistry, vol. 43, no. 1, pp. 437–463, 1992.
. [45] A. Ulman, “Formation and structure of self-assembled monolayers,” Chemical reviews, vol. 96, no. 4, pp. 1533–1554, 1996.
. [46] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self- assembled monolayers of thiolates on metals as a form of nanotechnology,” Chemical reviews, vol. 105, no. 4, pp. 1103–1170, 2005.
. [47] B. Liu, A. J. Bard, M. V. Mirkin, and S. E. Creager, “Electron transfer at self-assembled monolayers measured by scanning electrochemical microscopy,” Journal of the American Chemical Society, vol. 126, no. 5, pp. 1485–1492, 2004.
. [48] F. Schreiber, A. Eberhardt, T. Leung, P. Schwartz, S. Wetterer, D. Lavrich, L. Berman, P. Fenter, P. Eisenberger, and G. Scoles, “Adsorption mechanisms, structures, and growth regimes of an archetypal self-assembling system: Decanethiol on au (111),” Physical Re- view B, vol. 57, no. 19, p. 12476, 1998.
. [49] D.SehgalandI.K.Vijay,“Amethodforthehighefficiencyofwater-solublecarbodiimide- mediated amidation,” Analytical biochemistry, vol. 218, no. 1, pp. 87–91, 1994.
. [50] M. J. Fischer, “Amine coupling through edc/nhs: a practical approach,” Surface plasmon resonance: methods and protocols, pp. 55–73, 2010.
. [51] S. K. Vashist, “Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications,” Diagnostics, vol. 2, no. 3, pp. 23–33, 2012.
. [52] Z. Guler and A. Sarac, “Electrochemical impedance and spectroscopy study of the edc/ nhs activation of the carboxyl groups on poly (!-caprolactone)/poly (m-anthranilic acid) nanofibers,” Express Polymer Letters, vol. 10, no. 2, p. 96, 2016.
. [53] N. Nakajima and Y. Ikada, “Mechanism of amide formation by carbodiimide for biocon- jugation in aqueous media,” Bioconjugate chemistry, vol. 6, no. 1, pp. 123–130, 1995.
. [54] S. Sam, L. Touahir, J. Salvador Andresa, P. Allongue, J.-N. Chazalviel, A. Gouget- Laemmel, C. Henry de Villeneuve, A. Moraillon, F. Ozanam, N. Gabouze et al., “Semi- quantitative study of the edc/nhs activation of acid terminal groups at modified porous silicon surfaces,” Langmuir, vol. 26, no. 2, pp. 809–814, 2009.
. [55] “Thermofisher scientific inc.co carbodiimide crosslink chemistry,” https://goo.gl/ MVrvGk.
. [56] A.Bogomolova,E.Komarova,K.Reber,T.Gerasimov,O.Yavuz,S.Bhatt,andM.Aldissi, “Challenges of electrochemical impedance spectroscopy in protein biosensing,” Analytical chemistry, vol. 81, no. 10, pp. 3944–3949, 2009.
. [57] D. Käfer, G. Witte, P. Cyganik, A. Terfort, and C. Wöll, “A comprehensive study of self- assembled monolayers of anthracenethiol on gold: Solvent effects, structure, and stability,” Journal of the American Chemical Society, vol. 128, no. 5, pp. 1723–1732, 2006.
. [58] J. Stettner, P. Frank, T. Griesser, G. Trimmel, R. Schennach, R. Resel, and A. Winkler, “Characterization of 11-mua sam formation on gold surfaces,” Interface Controlled Or- ganic Thin Films, pp. 101–105, 2009.
. [59] R. K. Mendes, R. S. Freire, C. P. Fonseca, S. Neves, and L. T. Kubota, “Characterization of self-assembled thiols monolayers on gold surface by electrochemical impedance spec- troscopy,” Journal of the Brazilian Chemical Society, vol. 15, no. 6, pp. 849–855, 2004.
. [60] A. L. Eckermann, D. J. Feld, J. A. Shaw, and T. J. Meade, “Electrochemistry of redox- active self-assembled monolayers,” Coordination chemistry reviews, vol. 254, no. 15, pp. 1769–1802, 2010.
. [61] J. Wan, J. Ai, Y. Zhang, X. Geng, Q. Gao, and Z. Cheng, “Signal-off impedimetric im- munosensor for the detection of escherichia coli o157: H7,” Scientific reports, vol. 6, p. 19806, 2016.
. [62] F.S.Damos,R.C.Luz,andL.T.Kubota,“Determinationofthickness,dielectricconstant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir, vol. 21, no. 2, pp. 602–609, 2005.
. [63] L.-S. Jang and H.-K. Keng, “Modified fabrication process of protein chips using a short- chain self-assembled monolayer,” Biomedical microdevices, vol. 10, no. 2, pp. 203–211, 2008.
. [64] K.Yaffe,A.Weston,N.R.Graff-Radford,S.Satterfield,E.M.Simonsick,S.G.Younkin, L. H. Younkin, L. Kuller, H. N. Ayonayon, J. Ding et al., “Association of plasma β-amyloid level and cognitive reserve with subsequent cognitive decline,” Jama, vol. 305, no. 3, pp. 261–266, 2011.
|