(3.237.97.64) 您好!臺灣時間:2021/03/04 15:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃子娟
研究生(外文):Huang, Tzu-Chuan
論文名稱:利用電化學電阻抗頻譜分析法進行超微量阿茲海默症生化因子 - β 澱粉蛋白快速檢測
論文名稱(外文):Rapid detection of beta-amyloid in Alzheimer’s disease with an ultra-high sensitivity by electrochemical impedance spectroscopy
指導教授:陳榮治陳榮治引用關係
指導教授(外文):Chen, Jung-Chih
口試委員:陳榮治吳靖宙李博仁莊競程
口試委員(外文):Chen, Jung-ChihWu, Ching-ChouLi, Bor-RanChuang, Ching-Cheng
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:54
中文關鍵詞:阿茲海默β澱粉蛋白電化學電阻抗頻譜分析快篩
外文關鍵詞:beta-amyloidAlzheimer’s diseaseelectrochemical impedance spectroscopyRapid detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人口的老化已成為全世界嚴重的經濟挑戰。相對的,罹患阿茲海默症的人數也逐年 增加。阿茲海默症為神經退化性疾病,其腦部神經細胞受到破壞,造成病患在記憶力、 認知功能甚至語言表達及肢體動作等各方面的功能障礙。而目前尚未證實有藥物能恢 復已經受損的腦神經細胞,僅有針對患者提供減緩疾病惡化的藥物。另外,臨床顯示, 若能早期檢測出此疾病才能有助於提供患者延緩疾病惡化。然而,目前的診斷方式卻 侷限於醫院或是少數機構擁有的貴重儀器,且檢測的成本費用昂貴,無法普及一般社 會民眾而延誤疾病治療的時機。因此,我們致力於發展一個快速、簡便且又低成本的 檢測方式,希望未來能應用於採檢血液以及淚液做為檢體,檢測其中超微量的 β 澱粉 蛋白。而目前 β 澱粉蛋白 40 及 β 澱粉蛋白 42 為檢測阿茲海默症重要的生物標記。在 本研究中,我們使用電化學測量方式搭配低成本的一次性拋棄式電極應用於免疫感測 器中。藉由電阻抗量測系統以及其阻抗等效電路的應用,能夠量化極少量的 β 澱粉 蛋白濃度並得到一個建構於濃度變化上的標準曲線。此免疫感測器的偵測極限為 1 pg ml−1 ,具有相當的潛力應用於未來阿茲海默症之臨床檢測中。
Alzheimer’s disease is a severe progressive neurodegenerative brain disorder affecting elder population. The devastating illness cause an irreversible dysfunction in neuron while there is no proven cure for patients. Therefore, earlier diagnosis would provide an effective therapeutic treatment to ameliorate the process. The current medical diagnosis in Alzheimer’s disease is time-consuming and expensive with the limitation to special institutes or hospital. As the result, many patients do not get the proper diagnosis until the symptoms occur. The critical biomarkers in Alzheimer’s disease are two isoforms, Aβ(1–40) and Aβ(1–42). Therefore, we endeavor to investigate a rapid and low-cost method to quantify Aβ(1–40) and Aβ(1–42) at a level in blood and tears. We develop a immunosensor utilizing a screen-printed-electrode while electrochemi- cal instrument serves as the transduser. Based on the electrochemistry impedance spectroscopy technique, the quantitative signal of beta-amyloid is analyzed through an equivalent circuit and further conduct a concentration standard curve. The proposed sensor performs a limit of detec- tion (LOD) of 1pg ml−1 that could further be a promising diagnosis approach in Alzheimer’s disease.
摘要............................ ii
Abstract.......................... iii
Acknowledgement .................... iv
Table of Contents ..................................... v
List of Figures ....................................... vii
List of Tables........................................ ix

1 Introduction....................................... 1
. 1.1  Background-Alzheimer’sdisease ........................ 1

. 1.2  Diagnosisapproach................................ 2

. 1.3  Motivation..................................... 3

. 1.4  ConceptualFramework.............................. 4

2 PrincipleandTheoreticalFramework ........................ 5
. 2.1  Overviewofelectrochemicalsystems ...................... 5

. 2.2  Electrochemicalcellandreactions ........................ 6

. 2.3  CyclicVoltammetry................................ 8
2.3.1 Reversiblesystems............................ 10
2.3.2 Irreversiblesystems ........................... 12

. 2.4  ElectrochemicalImpedanceSpectroscopy(EIS) . . . . . . . . . . . . . . . . . 13
2.4.1 IntroductiontoEIS............................ 13
2.4.2 Linearitypropertyofthesystem ..................... 15
2.4.3 ExpressionofImpedance......................... 16

3 MaterialandMethodology............................... 19
. 3.1  ExperimentalChemicals .......................... 19

. 3.2  ExperimentalApparatus .......................... 20

. 3.3  Experimentmethodology........................... 20

3.3.1 Characteristic of screen-printed-electrode . . . . . . . . . . . . . . . . 20
3.3.2 Surface modification of self-assembly monolayer . . . . . . . . . . . . 21
3.3.3 Crosslinkreagent............................. 24
3.4 Experimentprocedure............................... 28
. 3.4.1  Experimentoverview........................... 28

. 3.4.2  Electrodetreatmentandinstrumentsetup . . . . . . . . . . . . . . . . 29

. 3.4.3  SAMformation.............................. 30

. 3.4.4  EDC/NHScrosslink ........................... 30

. 3.4.5  Antibody immobilization and blocking process . . . . . . . . . . . . . 31

. 3.4.6  Peptidepreparation............................ 32

4 ResultandDiscussion ................................. 33
. 4.1  Characterization of nanostructure configuration on SPEs . . . . . . . . . . . . 33

. 4.2  SAMmodificationwithtime-savingmethod................... 35

. 4.3  EDC/NHScrosslinklayer........................... 38

. 4.4  Antibody immobilization and the optimal concentration . . . . . . . . . . . . . 40

. 4.5  Quantitative Detection of Total Aβ(1-40) and Aβ(1-42) . . . . . . . . . . . . . 42

. 4.6  Resultofthebiomarker:Aβ40/42ratio ..................... 44

5 Conclusion ....................................... 46
References ......................................... 47
. [1]  S. Sadigh-Eteghad, B. Sabermarouf, A. Majdi, M. Talebi, M. Farhoudi, and J. Mahmoudi, “Amyloid-beta: a crucial factor in alzheimer’s disease,” Medical principles and practice, vol. 24, no. 1, pp. 1–10, 2015.

. [2]  C. Qiu, M. Kivipelto, and E. von Strauss, “Epidemiology of alzheimer’s disease: oc- currence, determinants, and strategies toward intervention,” Dialogues in clinical neuro- science, vol. 11, no. 2, p. 111, 2009.

. [3]  K. J. Anstey, N. Cherbuin, P. M. Herath, C. Qiu, L. H. Kuller, O. L. Lopez, R. S. Wilson, and L. Fratiglioni, “A self-report risk index to predict occurrence of dementia in three independent cohorts of older adults: the anu-adri,” PLoS One, vol. 9, no. 1, p. e86141, 2014.

. [4]  A. Nordberg, “Amyloid plaque imaging in vivo: current achievement and future prospects,” European journal of nuclear medicine and molecular imaging, vol. 35, no. 1, pp. 46–50, 2008.

. [5]  D. J. Selkoe, “Alzheimer9s disease: Genes, proteins, and therapy,” Physiological reviews, vol. 81, no. 2, pp. 741–766, 2001.

. [6]  D. J. Selkoe, “Cell biology of protein misfolding: the examples of alzheimer’s and parkin- son’s diseases,” Nature cell biology, vol. 6, no. 11, pp. 1054–1061, 2004.

. [7]  J. Davis and W. E. Van Nostrand, “Enhanced pathologic properties of dutch-type mutant amyloid beta-protein,” Proceedings of the National Academy of Sciences, vol. 93, no. 7, pp. 2996–3000, 1996.

. [8]  K. Murakami, K. Irie, A. Morimoto, H. Ohigashi, M. Shindo, M. Nagao, T. Shimizu, and T. Shirasawa, “Neurotoxicity and physicochemical properties of aβ mutant peptides from cerebral amyloid angiopathy implication for the pathogenesis of cerebral amyloid angiopathy and alzheimer’s disease,” Journal of Biological Chemistry, vol. 278, no. 46, pp. 46 179–46 187, 2003.
. [9]  A.D.International,WorldAlzheimerreport2010:theglobaleconomicimpactofdementia. Alzheimer’s Disease International, 2010.

. [10]  L.M.Luheshi,G.G.Tartaglia,A.-C.Brorsson,A.P.Pawar,I.E.Watson,F.Chiti,M.Ven- druscolo, D. A. Lomas, C. M. Dobson, and D. C. Crowther, “Systematic in vivo analysis of the intrinsic determinants of amyloid β pathogenicity,” PLoS biology, vol. 5, no. 11, p. e290, 2007.

. [11]  L. Glodzik, S. de Santi, W. H. Tsui, L. Mosconi, R. Zinkowski, E. Pirraglia, H. Y. Wang, Y. Li, K. E. Rich, H. Zetterberg et al., “Phosphorylated tau 231, memory decline and medial temporal atrophy in normal elders,” Neurobiology of aging, vol. 32, no. 12, pp. 2131–2141, 2011.

. [12]  A. M. Fjell, I. K. Amlien, L. T. Westlye, V. Stenset, T. Fladby, A. Skinningsrud, D. E. Eilsertsen, A. Bjørnerud, and K. B. Walhovd, “Csf biomarker pathology correlates with a medial temporo-parietal network affected by very mild to moderate alzheimer’s disease but not a fronto-striatal network affected by healthy aging,” Neuroimage, vol. 49, no. 2, pp. 1820–1830, 2010.

. [13]  A. M. Fjell, K. B. Walhovd, C. Fennema-Notestine, L. K. McEvoy, D. J. Hagler, D. Hol- land, K. Blennow, J. B. Brewer, A. M. Dale, and A. D. N. Initiative, “Brain atrophy in healthy aging is related to csf levels of aβ1-42,” Cerebral Cortex, vol. 20, no. 9, pp. 2069– 2079, 2010.

. [14]  C. Mulder, N. A. Verwey, W. M. van der Flier, F. H. Bouwman, A. Kok, E. J. van Elk, P. Scheltens, and M. A. Blankenstein, “Amyloid-β (1–42), total tau, and phosphorylated tau as cerebrospinal fluid biomarkers for the diagnosis of alzheimer disease,” Clinical chemistry, vol. 56, no. 2, pp. 248–253, 2010.

. [15]  S. Engelborghs, K. Maertens, E. Vloeberghs, T. Aerts, N. Somers, P. Mariën, and P. P. De Deyn, “Neuropsychological and behavioural correlates of csf biomarkers in dementia,” Neurochemistry international, vol. 48, no. 4, pp. 286–295, 2006.

. [16]  G. De Meyer, F. Shapiro, H. Vanderstichele, E. Vanmechelen, S. Engelborghs, P. P. De Deyn, E. Coart, O. Hansson, L. Minthon, H. Zetterberg et al., “Diagnosis-independent alzheimer disease biomarker signature in cognitively normal elderly people,” Archives of neurology, vol. 67, no. 8, pp. 949–956, 2010.

. [17]  H.Hampel,K.Blennow,L.M.Shaw,Y.C.Hoessler,H.Zetterberg,andJ.Q.Trojanowski, “Total and phosphorylated tau protein as biological markers of alzheimer’s disease,” Ex- perimental gerontology, vol. 45, no. 1, pp. 30–40, 2010.

. [18]  M. Bibl, B. Mollenhauer, P. Lewczuk, H. Esselmann, S. Wolf, C. Trenkwalder, M. Otto, G. Stiens, E. Rüther, J. Kornhuber et al., “Validation of amyloid-β peptides in csf diagnosis of neurodegenerative dementias,” Molecular psychiatry, vol. 12, no. 7, pp. 671–680, 2007.

. [19]  A. M. Fagan, C. M. Roe, C. Xiong, M. A. Mintun, J. C. Morris, and D. M. Holtzman, “Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nonde- mented older adults,” Archives of neurology, vol. 64, no. 3, pp. 343–349, 2007.

. [20]  A. M. Fagan, D. Head, A. R. Shah, D. Marcus, M. Mintun, J. C. Morris, and D. M. Holtz- man, “Decreased cerebrospinal fluid aβ42 correlates with brain atrophy in cognitively nor- mal elderly,” Annals of neurology, vol. 65, no. 2, pp. 176–183, 2009.

. [21]  J. V. Rushworth, A. Ahmed, H. H. Griffiths, N. M. Pollock, N. M. Hooper, and P. A. Millner, “A label-free electrical impedimetric biosensor for the specific detection of alzheimer’s amyloid-beta oligomers,” Biosensors and Bioelectronics, vol. 56, pp. 83–90, 2014.

. [22]  M. Chikae, T. Fukuda, K. Kerman, K. Idegami, Y. Miura, and E. Tamiya, “Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode,” Bioelec- trochemistry, vol. 74, no. 1, pp. 118–123, 2008.

. [23]  M. Flirski and T. Sobow, “Biochemical markers and risk factors of alzheimer’s disease,” Current Alzheimer Research, vol. 2, no. 1, pp. 47–64, 2005.

. [24]  B. R. Fluharty, E. Biasini, M. Stravalaci, A. Sclip, L. Diomede, C. Balducci, P. La Vitola, M. Messa, L. Colombo, G. Forloni et al., “An n-terminal fragment of the prion protein binds to amyloid-β oligomers and inhibits their neurotoxicity in vivo,” Journal of Biolog- ical Chemistry, vol. 288, no. 11, pp. 7857–7866, 2013.

. [25]  O. V. Forlenza, B. S. Diniz, and W. F. Gattaz, “Diagnosis and biomarkers of predementia in alzheimer’s disease,” BMC medicine, vol. 8, no. 1, p. 89, 2010.

. [26]  D.G.Georganopoulou,L.Chang,J.-M.Nam,C.S.Thaxton,E.J.Mufson,W.L.Klein,and C. A. Mirkin, “Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for alzheimer’s disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2273–2276, 2005.

. [27]  T.E.Golde,C.B.Eckman,andS.G.Younkin,“Biochemicaldetectionofaβisoforms:im- plications for pathogenesis, diagnosis, and treatment of alzheimer’s disease,” Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, vol. 1502, no. 1, pp. 172–187, 2000.

. [28]  I. Grabowska, H. Radecka, A. Burza, J. Radecki, M. Kaliszan, and R. Kaliszan, “Asso- ciation constants of pyridine and piperidine alkaloids to amyloid ß peptide determined by electrochemical impedance spectroscopy,” Current Alzheimer Research, vol. 7, no. 2, pp. 165–172, 2010.

. [29]  A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: funda- mentals and applications. wiley New York, 1980, vol. 2.

. [30]  R. Marshall and F. Walsh, “A review of some recent electrolytic cell designs,” Surface Technology, vol. 24, no. 1, pp. 45–77, 1985.

. [31]  X. Yuan, H. Wang, J. C. Sun, and J. Zhang, “Ac impedance technique in pem fuel cell diagnosis —a review,” International Journal of Hydrogen Energy, vol. 32, no. 17, pp. 4365–4380, 2007.

. [32]  G. Wang, L. Zhang, and J. Zhang, “A review of electrode materials for electrochemical supercapacitors,” Chemical Society Reviews, vol. 41, no. 2, pp. 797–828, 2012.

. [33]  M. D. Stoller and R. S. Ruoff, “Best practice methods for determining an electrode mate- rial’s performance for ultracapacitors,” Energy & Environmental Science, vol. 3, no. 9, pp. 1294–1301, 2010.

. [34]  J. Wang, Analytical electrochemistry. John Wiley & Sons, 2006.

. [35]  S. Mulligan and P. Hull, “Design and optimisation of a water vortex hydropower plant,”
Undergraduate thesis, Inst. of Tech. Sligo, Sligo, Ireland, 2010.

. [36]  E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and
applications. John Wiley & Sons, 2005.

. [37]  V. Srinivasaraghavan and M. Agah, “Impedance sensing techniques for biomedical mi-
crodevices,” 2015.

. [38]  J.-J. Tsai, I.-J. Bau, H.-T. Chen, Y.-T. Lin, and G.-J. Wang, “A novel nanostructured biosensor for the detection of the dust mite antigen der p2,” International journal of nanomedicine, vol. 6, p. 1201, 2011.

. [39]  Y.-T. Tung, M.-F. Wu, G.-J. Wang, and S.-L. Hsieh, “Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the clec5a receptor,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 10, no. 6, pp. 1335–1341, 2014.

. [40]  J. L. Wilbur and G. M. Whitesides, “Self-assembly and self-assembled monolayers in micro-and nanofabrication,” Nanotechnology, pp. 331–370, 1999.

. [41]  S. Jadhav, “Self-assembled monolayers (sams) of carboxylic acids: an overview,” Open Chemistry, vol. 9, no. 3, pp. 369–378, 2011.

. [42]  C. Vericat, M. Vela, G. Benitez, P. Carro, and R. Salvarezza, “Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system,” Chemical Society Reviews, vol. 39, no. 5, pp. 1805–1834, 2010.

. [43]  A. Pakiari and Z. Jamshidi, “Nature and strength of m- s bonds (m= au, ag, and cu) in binary alloy gold clusters,” The Journal of Physical Chemistry A, vol. 114, no. 34, pp. 9212–9221, 2010.

. [44]  L. H. Dubois and R. G. Nuzzo, “Synthesis, structure, and properties of model organic surfaces,” Annual review of physical chemistry, vol. 43, no. 1, pp. 437–463, 1992.

. [45]  A. Ulman, “Formation and structure of self-assembled monolayers,” Chemical reviews, vol. 96, no. 4, pp. 1533–1554, 1996.

. [46]  J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self- assembled monolayers of thiolates on metals as a form of nanotechnology,” Chemical reviews, vol. 105, no. 4, pp. 1103–1170, 2005.

. [47]  B. Liu, A. J. Bard, M. V. Mirkin, and S. E. Creager, “Electron transfer at self-assembled monolayers measured by scanning electrochemical microscopy,” Journal of the American Chemical Society, vol. 126, no. 5, pp. 1485–1492, 2004.

. [48]  F. Schreiber, A. Eberhardt, T. Leung, P. Schwartz, S. Wetterer, D. Lavrich, L. Berman, P. Fenter, P. Eisenberger, and G. Scoles, “Adsorption mechanisms, structures, and growth regimes of an archetypal self-assembling system: Decanethiol on au (111),” Physical Re- view B, vol. 57, no. 19, p. 12476, 1998.

. [49]  D.SehgalandI.K.Vijay,“Amethodforthehighefficiencyofwater-solublecarbodiimide- mediated amidation,” Analytical biochemistry, vol. 218, no. 1, pp. 87–91, 1994.

. [50]  M. J. Fischer, “Amine coupling through edc/nhs: a practical approach,” Surface plasmon resonance: methods and protocols, pp. 55–73, 2010.

. [51]  S. K. Vashist, “Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications,” Diagnostics, vol. 2, no. 3, pp. 23–33, 2012.

. [52]  Z. Guler and A. Sarac, “Electrochemical impedance and spectroscopy study of the edc/ nhs activation of the carboxyl groups on poly (!-caprolactone)/poly (m-anthranilic acid) nanofibers,” Express Polymer Letters, vol. 10, no. 2, p. 96, 2016.

. [53]  N. Nakajima and Y. Ikada, “Mechanism of amide formation by carbodiimide for biocon- jugation in aqueous media,” Bioconjugate chemistry, vol. 6, no. 1, pp. 123–130, 1995.

. [54]  S. Sam, L. Touahir, J. Salvador Andresa, P. Allongue, J.-N. Chazalviel, A. Gouget- Laemmel, C. Henry de Villeneuve, A. Moraillon, F. Ozanam, N. Gabouze et al., “Semi- quantitative study of the edc/nhs activation of acid terminal groups at modified porous silicon surfaces,” Langmuir, vol. 26, no. 2, pp. 809–814, 2009.

. [55]  “Thermofisher scientific inc.co carbodiimide crosslink chemistry,” https://goo.gl/ MVrvGk.

. [56]  A.Bogomolova,E.Komarova,K.Reber,T.Gerasimov,O.Yavuz,S.Bhatt,andM.Aldissi, “Challenges of electrochemical impedance spectroscopy in protein biosensing,” Analytical chemistry, vol. 81, no. 10, pp. 3944–3949, 2009.

. [57]  D. Käfer, G. Witte, P. Cyganik, A. Terfort, and C. Wöll, “A comprehensive study of self- assembled monolayers of anthracenethiol on gold: Solvent effects, structure, and stability,” Journal of the American Chemical Society, vol. 128, no. 5, pp. 1723–1732, 2006.

. [58]  J. Stettner, P. Frank, T. Griesser, G. Trimmel, R. Schennach, R. Resel, and A. Winkler, “Characterization of 11-mua sam formation on gold surfaces,” Interface Controlled Or- ganic Thin Films, pp. 101–105, 2009.

. [59]  R. K. Mendes, R. S. Freire, C. P. Fonseca, S. Neves, and L. T. Kubota, “Characterization of self-assembled thiols monolayers on gold surface by electrochemical impedance spec- troscopy,” Journal of the Brazilian Chemical Society, vol. 15, no. 6, pp. 849–855, 2004.

. [60]  A. L. Eckermann, D. J. Feld, J. A. Shaw, and T. J. Meade, “Electrochemistry of redox- active self-assembled monolayers,” Coordination chemistry reviews, vol. 254, no. 15, pp. 1769–1802, 2010.

. [61]  J. Wan, J. Ai, Y. Zhang, X. Geng, Q. Gao, and Z. Cheng, “Signal-off impedimetric im- munosensor for the detection of escherichia coli o157: H7,” Scientific reports, vol. 6, p. 19806, 2016.

. [62]  F.S.Damos,R.C.Luz,andL.T.Kubota,“Determinationofthickness,dielectricconstant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir, vol. 21, no. 2, pp. 602–609, 2005.

. [63]  L.-S. Jang and H.-K. Keng, “Modified fabrication process of protein chips using a short- chain self-assembled monolayer,” Biomedical microdevices, vol. 10, no. 2, pp. 203–211, 2008.

. [64]  K.Yaffe,A.Weston,N.R.Graff-Radford,S.Satterfield,E.M.Simonsick,S.G.Younkin, L. H. Younkin, L. Kuller, H. N. Ayonayon, J. Ding et al., “Association of plasma β-amyloid level and cognitive reserve with subsequent cognitive decline,” Jama, vol. 305, no. 3, pp. 261–266, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔