(3.232.129.123) 您好!臺灣時間:2021/03/06 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭嘉勳
研究生(外文):Chia-Hsun Cheng
論文名稱:高科技公司專案研發人員之離職預測模型建置
論文名稱(外文):Employee turnover prediction model, a case study of hi-tech R&D-team.
指導教授:鄭晉昌鄭晉昌引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:人力資源管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:53
中文關鍵詞:預測離職行為決策樹演算法
外文關鍵詞:predictionturnover behaviorDecision tree
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:3
本研究希望能在預測離職模型上貢獻一份心力,藉由數據分析方法中的決策樹演算法建立預測離職模型。利用此種演算法是因兩大優點:一個是分析結果圖像化,不需要太多的數學基礎就能看懂且運用;另一個就是其計算速度快,在資料量越大的時候越能凸顯此項優點。擁有這些優勢讓他在實務上的運用具有高潛力,也有機會能更加快速的反應組織成員的狀況。
本研究梳理了眾多文獻中能用來預測離職行為的因素,參考並作為輸入決策樹預測變數的基礎,輸出則是離職狀態與否。我們就(在職/離職)者在過去的同一時點出發,到了離職者正式離職,而在職者依然在職的期間,他們的狀態改變中,顯著變項作為預測行為的因素,並試圖探討此種因素的形成可能。
這次的資料收集中,我們從個案公司上取得一個高科技部門專案研發團隊的EHRMs資料,以五年為一單位,共237位員工、889 筆(因其不是每個員工年資都在5年以上,故資料總數不為237的5倍)人。我們建立預測離職模型的因素有二:年資、請假次數總計
此二項分別再組成了六組結果:
(1)請假次數多於43次者,幾乎離職
(2)請假次數小於(含)43次者,同時年資大於48個月,幾乎在職
(3)年資小於(含)48個月者,同時請假次數大於18次,多離職
(4)請假次數小於(含)18次者,同時年資大於27個月,幾乎在職
(5)年資介於27(含)~3個月間者,請假次數小於(含)18次者,較多留職
(6)年資小於(含)3個月者,請假次數小於(含)18次者,較多離職
Base on the approach of machine learning, we built an employee turnover prediction model faster and more visualization by utilizing Decision tree on human resource management (HRM) data. These advantages allow it be more useful in practice and reflect the condition of labor force in firm timely.

In this thesis, we refer to many factors of predicting turnover behavior from literatures, and collect these factors from EHRMs of the firm. We find out some significant changes of those who left or stayed within five years. Then, we build a turnover prediction model by these changes.

We totally get 889 records of 237 employees from the firm. The result of the model is :
(1) Those who took leaves more than 43 times, 95% of them leave
(2) Those who took leaves less than or equal to 43 times and had more than 48 months’ seniority, 0.2% of them leave.
(3) Those who took leaves between 18 to 43 times and had less than or equal to 48 months’ seniority, 69% of them leave.
(4) Those who took leaves less than or equal to 18 times and had between 27 to 48 months’ seniority, 5.3% of them leave.
(5) Those who took leaves less than or equal to 18 times and had between 3 to 27 months’ seniority, 33% of them leave.
(6) Those who Those who took leaves less than or equal to 18 times and had less than or equal to 3 months’ seniority, 64.2% of them leave.
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 2
第二章 文獻探討 4
第一節 影響離職行為之相關因素文獻回顧 4
第二節 資料探勘法與機器學習、決策樹之相關研究 8
第三章 研究方法 18
第一節 研究流程 18
第二節 研究範圍 19
第三節 資料預處理 20
第四節 資料分析方法:決策樹 21
第四章 分析結果 22
第一節 資料形式整理 22
第二節 決策樹演算法參數選用條件 29
第三節 資料探勘結果與圖示說明 30
第四節 結果分析 32
第五章 討論與結論 35
第一節 分析結果討論 35
第二節 管理意涵 38
第三節 研究限制 40
參考文獻 41
楊善林、倪志偉(2004)。機器學習與智慧決策支援系統。中國北京:科學出版社

蔡立宇、黄章帅、周济民(譯)(2015)。Spark机器学习(原著:Nick Pentreath)。中國北京:人民郵電出版社。(原著出版年:2015)

Ahmad, K. Z., & Raida, A. B., (2003). The association between training and organizational commitment among white‐collar workers in Malaysia. International Journal of Training and Development 7(3), 166-185

Arie, C. G., & Erik H. B. (2004). Is High Employee Turnover Really Harmful? An Empirical Test Using Company Records. The Academy of Management Journal 47(2), 277-286.

Barrick, M. R., & Zimmerman, R. D. (2005). Reducing voluntary, avoidable turnover through selection. Journal of Applied Psychology, 90(1), 159-166.

Berry, M., & Linoff, G. (1997), Dataminig Techniques for Marketing, Sales and Customer Support, John Wiley & Sons, New York.

Boles, J. S., Dudley, G. W., Onyemah, V., Rouziès, D., & Weeks, W. A. (2012). Sales force turnover and retention: A research agenda. Journal of Personal Selling & Sales Management, 32(1), 131-140.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

C. Kleissner. (1998). Data mining for the enterprise.

Chalkiti, K., & Sigala, M. (2010). Staff turnover in the Greek tourism industry: A comparison between insular and peninsular regions. International Journal of Contemporary Hospitality Management, 22(3), 335-359.

Charlie, O. T. (2001). Interactions among Actual Ease-of-Movement Determinants and Job Satisfaction in the Prediction of Voluntary Turnover. The Academy of Management Journal, 44(4), 621-638.

Chien, C.-F., & Chen, L.-F. (2008). Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry. Expert Systems with Applications, 34(1), 280-290.

Coenen, F., Goulbourne, G., & Leng, P. (2004). Tree Structures for Mining
association Rules. Data Mining and Knowledge Discovery, 8(1), 25-51.

Cottini, E., Kato, T., & Westergaard-Nielsen, N. (2011). Adverse workplace conditions, high-involvement work practices and labor turnover: Evidence from
Danish linked employer–employee data. Labour Economics, 18(6), 872-880.

Cristina O., Louis W. (2003). A complete fuzzy decision tree technique. Fuzzy Sets and Systems, 140(3), 563-565.

Fayyad, U.M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery: An Overview American Association for Artificial Intelligence Menlo Park.

Federico, J. M., Federico, P. and Lundquist, G. W. (1976, Winter). Predicting women‟s turnover as a function of extend of met salary expectations and biodemographic data. Personnel Psychology, 559-66

Glebbeek, A. C., & Bax, E. H. (2004). Is High Employee Turnover Really Harmful? An Empirical Test Using Company Records. Academy of Management Journal, 47, 277-286.

Grupe, F.H., & Owrang, M.M. (1995). Database Mining Discovering New Knowledge and Cooperative Advantage. Information System Management 12(4), 26-30.

Hinkin, T. R., & Tracey, J. B. (2000). The cost of turnover: Putting a price on the learning curve [Electronic version]. The Cornell Hotel and Restaurant Administration Quarterly, 41(3), 14-21.

Holtom, B. C., Terence, R. M., Thomas, W. L., & Marion, B. E. (2008). Turnover and Retention Research: A Glance at the Past, a Closer Review of the Present, and a Venture into the Future. The Academy of Management Annals, 2(1), 231-274.

James, R. T., & Thomas W. L. (1984). A Predictive Study of Organizational Turnover Rates. The Academy of Management Journal, 27(4), 793-810

Jia-Wei, H., Kamber, M., & Jian, P. (2001). Data mining concepts and technologies.

Kouris, I.N., Makri, C.H., & Tsakalidis, A.K. (2005). Using Information Retrieval
techniques for supporting data mining. Data & Knowledge Engineering, 52(3) 353-383.

Linoff, G. S., & Berry, M. J. (2011). Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley.

Martinsons, M. G. (1997). Human resource management applications of knowledge-based systems. International Journal of Information Management, 17(1), 35-53.

Marsh, R., & Mannari, H.(1997). Organizational commitment and turnover: A predictive study. Administrative Science Quarterly, 22, 57-75.

Michael, A. A., & Barry, D. B. (1984). Optimal and Dysfunctional Turnover: Toward an Organizational Level Model. The Academy of Management Review, 9(2), 331-341.

Mobley, W. H. (1977). Intermediate linkages in the relationship between job satisfaction and employee turnover. Journal of Applied Psychology, 62(2), 237-240.

Mobley, W. H. (1979). A Review and Conceptual Analysis of the Employee Turnover Process. Psychological Bulletin, 86(3), 493-522.

Murray R. B., & Ryan D. Z. (2005). Reducing Voluntary, Avoidable Turnover Through Selection. Journal of Applied Psychology, 90(1), 159-166.

Newman, J. E. (1974). Predicting absenteeism and turnover: A field comparison of Eishbein's model and traditional job attitude measures. Journal of Applied Psychology, 59, 610-615.

Olaru, C., & Wehenkel, L. (2003). A complete fuzzy decision tree technique. Fuzzy Sets and Systems, 138, 221-254.

Ongori, H. (2007). A review of the literature on employee turnover. African Journal of Business Management, 49-54.

Peacock, P.R. (1998). Data Mining in Marketing: Part1. Marketing Management, 16(4), 8-18.

Piatetsky-Shapiro, G., & Frawley W. (1991). Knowledge Discovery in Databases. Cambridge, MA:MIT Press.

Rodger W. G., Peter W. H., & Stefan G. (2000). A meta-analysis of antecedents and correlates of employee turnover: Update, moderator tests, and research implications for the next millennium. Journal of Management, 26(3), 463-488.

Rumelhart, D.E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.

Simoudis, E. (1996). Reality check for data mining. IEEE Expert: Intelligent Systems and Their Application, 11(5), 26-33.

Timothy R. H., & Tracey J. B. (2000). The Cost of Turnover: Putting a Price on the Learning Curve. The Cornell Hotel and Restaurant Administration Quarterly, 41(3), 14-21.

Wang, Y.-F., Chuang, Y.-L., Hsu, M.-H., & Keh, H.-C. (2004). A personalized recommender system for the cosmetic business. Expert Systems with Applications 26(3), 427-343.

Wang, X., Wang, H., Zhang, L., & Cao, X. (2011). Constructing a decision support system for management of employee turnover risk. Information Technology and Management, 12(2), 187-196.

Wehenkel, L. & Pavella, M. (1993). Advances in decision trees applied to power system security assessment. Int. J. of Elec. Power and Energy Syst., 15 (1) (1993), pp. 13-36.

Zimmerman, R. D. (2008). Understanding the impact of personality traits on individuals' turnover decisions: A meta‐analytic path model. Personnel Psychology, 61(2), 309-348.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔