(54.236.58.220) 您好!臺灣時間:2021/03/01 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉日順
研究生(外文):Jih-Shun Liu
論文名稱:農田水利田間灌溉用水管理績效提升之研究
論文名稱(外文):The Improvement of Farm Land Irrigation Water Management Performance
指導教授:吳瑞賢吳瑞賢引用關係
指導教授(外文):Ray-Shyan Wu
學位類別:博士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:134
中文關鍵詞:精密灌溉水旱田混作區系統動力模式田間容水量灌溉計畫物聯網
外文關鍵詞:Precision irrigationIntercropping fieldVensim modelField capacityIrrigation planInternet of Things (IoT)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:311
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:2
由於全球氣候變遷影響,對於具備灌溉設施的農業生產系統而言,頻繁且明顯的用水不均現象正在持續地發生,而對於屬於看天田之區域,用水短缺現象則更為嚴重。臺灣年降雨達2,500公釐,但80%的雨量發生在夏季,而且大多的降雨是由颱風所造成,由於降雨在時間與空間上的分佈不均,更加遽了乾旱及洪水的發生頻率。臺灣除了面臨極端氣候造成的問題,在佔用水量最大宗的農業用水方面,若能於有限的水資源條件下,增加用水的精確性,則可提升水情不佳時期的用水調整彈性。由於現有的灌溉系統多以人工操作為主,以致操作及輸送水源時,造成相關的輸水損失仍有必要的精進空間,因此提升田間灌溉用水管理績效及以現代化灌溉系統增加用水調控之精確,乃為乾旱時期提供足夠水量予作物生長及確保產量的良方。
於此,本研究以位於中部臺灣的彰化地區,屬莿仔埤圳灌溉系統的三條圳幹線灌區,以現地環境及水文條件,引用水平衡理論,經由系統動力模型建立研究區域水、旱田用水估算模式,除了降雨的補充,地表水與地下水於此管理模式中,均被視為灌區用水來源。本研究建立之智慧灌溉管理系統,經由田間監測設備回傳現地水深及相關水文參數,可自動計算水田及旱田之需水量,並自動判別渠道水源是否充足,而選擇以明渠或地下水水源進行灌溉,透過精密灌溉系統有效提升田間灌溉管理之精確,使研究區域水、旱田混作區域達到精密灌溉及提升灌溉管理績效。
本研究以102年水文氣象資料模擬缺水時期減供灌溉計畫水量30%及50%等兩種情境,探討其對於灌區作物之影響,結果顯示,於減供灌溉計畫30%水量之條件下,田間作物用水僅少量受到影響,故在抗旱初期,應可將其納為第一階段之應變策略。然於用水條件更為拮据之階段,施行灌溉計畫50%水量減供策略,依模擬結果顯示,應注意用水調節、管控及採輪灌措施,並更頻繁地調整水門,以避免下游灌區因無法獲得水源而達土壤凋萎點,造成下游灌區作物損失。
此外,本研究採104年二期作之水文條件進行模擬,顯示若上游灌區水源得以經模式控制,調整部份水源由地下水提供,則可相對減少其對於渠道水源之取用量;換言之,以此模式可達成調配渠道水量予下游灌區使用,並以地下水源為上游灌區進行補充灌溉,可使各個輪區渡過枯旱缺水時期。而經本研究延伸探討以位於研究區域上、下游地下水位監測井同時期水位歷史數據,分析比對當地地下水位變化,結果顯示該抽水容積,對於當地地下水位之影響,尚在合理範圍內。故若能於灌溉系統上游灌區,經評估及監測地下水位變化後,適當且適量地使用地下水作為補充灌溉水源,可使地下水更合理且有效被運用於解決乾旱時期之用水調配問題,同時,配合本研究所建立之智慧灌溉管理系統,將可有效應用田間監測所得大量數據,經由物聯網進行雲端運算後,即時為農田灌溉用水量及水源選定作出自動計算及提供決策參考,其成果有助於提升田間灌溉管理績效並達成精進灌溉節水之目標。
The agroecosystems of irrigated area are experiencing frequent and pronounced water imbalances such as water deficit which is more serious in rain-feed area as a consequence of global climate change.
Taiwan average annual rainfall is approximately 2,500 mm. In particular, 80% of the rainfall occurs in summer, and most of the heavy rainfall is caused by typhoons. The situation is worsening as climate change results in uneven rainfall, both in spatial and temporal terms. Moreover, climate change has resulted the variations in the seasonal rainfall pattern of Taiwan, thereby aggravating the problem of drought and flooding. However, due to increasing demands and continuous competition for high quality water resources in the agricultural-industrial-domestic triangle, it is unrealistic to expect further expansion of agricultural irrigation. But it’s possible to enhance the flexibility of water regulation by increasing the accuracy of water use under limited water resources. Since the irrigation water distribution system is mostly manually operated, which produces difficulty with regard to the accurate calculation of conveyance losses of channels and fields. Therefore, making agricultural water usage more efficient in the fields and increasing operational accuracy by using modern irrigation systems can ensure appropriate irrigation and sufficient yield during droughts. If agricultural water, which accounts for 70% of the nation’s total water usage, can be allocated more precisely and efficiently, it can improve the efficacy of water resource allocation.
In this study, a system dynamic model was used to establish an irrigation water management model for a companion and intercropping field in Central Taiwan. In addition to rainfall replenishment, both surface water and groundwater were considered as water sources for irrigation use. The intelligent irrigation management system established in this study can automatically calculate the water requirement of intercroping fields through the field monitoring equipment to obtain the current water depth and related hydrological parameters and automatically determine whether the channel water sources are sufficient and choose to use open channels or groundwater sources for irrigation. The precise irrigation system effectively improved the accuracy and the performance of field irrigation management in the mixed cropping area in the study region.
The model simulated two scenarios by reducing 30% and 50% of the planned irrigation water in year 2013. Results indicated that the field storage in the end block of the study area was lower than the wilting point under the 50% reduced irrigation water scenario. The original irrigation plan can be reduced to be more efficient in water usage, and a 50% reduction of irrigation can be applied as a solution of water shortage when drought occurs. However, every block should be irrigated in rotation, by adjusting all water gates more frequently to ensure that the downstream blocks can receive the allocated water to get through the drought event.
In addition, this study simulated the hydrological conditions of the 2nd crop season in year 2015. It shows that if the water supply in the upstream irrigation area is controlled by the model and some of the water supplied by the groundwater, the amount of water used from channel can be relatively reduced. In other words, to reach the water allocation for downstream irrigation use, groundwater sources for the upstream area can be appropriately used for irrigation, which enabling each rotation block to pass through the water shortage period. The historical data of groundwater level monitoring wells in the upstream and downstream location of the study area are extended to be discussed in this study. The changes of local groundwater level are analyzed and compared. The results show that the volume of the pumping water is still within a reasonable range for the local groundwater level. Therefore, if the groundwater is properly used as a supplementary irrigation source after assessment and monitoring of the groundwater level changes in the upstream irrigated area, groundwater can be used more reasonably and effectively to solve the problem of water allocation during the drought period. At the same time, the smart irrigation management system established in this research can be operated effectively to use the big data collected from field monitoring. After cloud computing via the Internet of Things (IoT), it will automatically calculate and provide decision-making references for the selection of farmland irrigation water and water sources. The results will help to improve field irrigation management performance and achieve the goal of improving irrigation and water conservation.
摘要 I
ABSTRACT III
誌謝 VI
目錄 VII
圖目錄 VIII
表目錄 XII
符號說明 XIII
第一章、 研究緣起與課題 1
1-1研究緣起 1
1-2研究課題 1
第二章、 文獻回顧 3
2-1田間灌溉前人研究 3
2-2田間用水智慧管理前人研究 12
2-3作物灌溉制度 14
第三章、 理論分析及模式建立 22
3-1模式理論分析 22
3-2研究區域概述 43
3-3田間精密灌溉系統建置 51
3-4系統動力模式建立 60
3-5模式驗證 72
第四章、 研究成果及探討 75
4-1田間精密灌溉用水估算模式建立及結果討論 75
4-2運用地表水與地下水灌溉管理模式及結果討論 95
第五章、 結論 110
參考文獻 112
1.駱安華,「迴歸水之計算和運用」,臺灣水利,第8卷第2期,1960。
2.徐世大、聯合國亞洲暨遠東經濟委員會防洪及水資源開發局,水文語彙,經濟部水資源統一規劃委員會出版,民國六十一年。
3.羅樹孝,水文學辭典,茂昌圖書,台北市,民國八十四年。
4.陳豐文,「農地可再利用迴歸水之調查研究-以桃園地區為例」,私立中原大學土木工程學系,碩士論文,1999。
5.行政院農業委員會、財團法人七星農田水利研究發展基金會,農業工程技術辭典,民國九十一年。
6.陳獻、蔡西銘、陳豐文、陳靖薇、劉日順,「水田灌溉後迴歸水估算模式之建立及應用」,農業工程學報,第51卷第2期,第41-61頁,94年6。
7.徐龍淵、徐恭也,「迴歸水利用現狀及加強方法」,農田水利,第34卷第8期,1986。
8.林啟超,「水田灌溉用水迴歸利用之研究」,國立臺灣大學農業工程學系,碩士論文,1997。
9.臺灣省水利局,「新竹苗栗地區水資源繼續調查研究計畫報告-苗栗公館區後龍溪河道與穿龍圳灌區水之動態研究」,1972。
10.雲林農田水利會,「雲林灌區迴歸水有效利用調查研究」,1991。
11.簡傳彬、李總集、李英正、吳瑞賢、溫志超、杻家慶,「水稻田迴歸水量量測及初步分析」,89年度農業工程研討會論文集,pp.575-582,2000。
12.財團法人農業工程研究中心,「石岡壩南幹渠道可再利用迴歸水源調查」,1996。
13.劉日順,「水田灌溉後可再利用迴歸水推估模式之研究」,私立中原大學土木工程學系,碩士論文,2001。
14.陳靖薇,「區域迴歸水推估模式之建立與應用」,私立中原大學土木工程學系,碩士論文,2004。
15.劉君帆,「灌溉系統迴歸水推估方法之研究-以嘉南水利會為例」,國立臺灣大學農業工程學系,碩士論文,1997。
16.Kan C. E. and Chang Y. C., “The impacts of over-irrigation toward return flow and percolation in paddy field”, 1998 Sino-Japanese Workshop on the Agricultural Development and Engineering, p191-216,1998.
17.范世億,「灌溉迴歸水再利用系統之合理供給率研究」,國立中興大學土木工程學系,博士論文,2012。
18.林癸妙,「水田迴歸水之研究」,國立中央大學土木工程學系,碩士論文,1998。
19.吳珮菁,「水田迴歸水之模式及驗證」,國立中央大學土木工程學系,碩士論文,1999。
20.高振程,「水田坵塊系統之迴歸水量推估」,國立中央大學土木工程學系,碩士論文,2003。
21.鄭明昇,「桃園灌區之區域迴歸水分析研究」,國立中央大學水文科學研究所,碩士論文,2007。
22.Oad R. and DiSpigno M, “Water rights to return flow from urban landscape irrigation”, Journal of Irrigation and Drainage Engineering, ASCE, Vol.123, Issue 4, pp.293-299, 1997.
23.Zulu G., Toyota M. and Misawa S. I., “Characteristics of water reuse and its effects on paddy irrigation system water balance and the riceland ecosystem”, Agricultural Water Management, Vol.31, Issue 3, pp.269-283, 1996.
24.Dewandel B., Gandolfi J. M., Condappa D. and Ahmed S., “An efficient methodology for estimating irrigation return flow coefficients of irrigated crops at watershed and seasonal scale”, Hydrological Processes, Vol.22, Issue 11, pp.1700-1712, 2007.
25.Kim H.K., Jang T.I., Im S.J. and Park S.W., “Estimation of irrigation return flow from paddy fields considering the soil moisture”, Agricultural Water Management, Vol.96, Issue 5, pp.875-882, 2009.
26.Kang M. and Park S., “Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations”, Agricultural Water Management, Vol.143, pp 131-141, 2014.
27.Agrawal M. K., Panda S. N., M. ASCE, and Panigrahi B.,” Modeling water balance parameters for rainfed rice”, Journal of Irrigation and Drainage Engineering, Vol.130, Issue 2, pp129-139, 2004.
28.許良瑋,「桃園埤塘輪灌系統之模擬分析」,國立中央大學土木工程學系,碩士論文,2011。
29.吳瑞賢、李明旭、陳世偉,「農業區地表水系統之模擬與推估」,農業工程學報,第57卷,第1期,第76-91頁,2011。
30.Xie X. H. and Cui Y. L., “Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice”, Journal of Hydrology, Vol.396, Issues 1-2, pp. 61-71, 2011.
31.Bhadra A., Bandyopadhyay A., Singh R. and Raghuwanshi N. S., “Development of a user friendly water balance model for paddy”, Paddy and Water Environment, Vol.11, Issue 1-4, pp.331-341, 2013.
32.Wu R. S., Liu J. S., Chang S.Y. and Hussain F.,” Modeling of mixed crop field water demand and a smart irrigation system”, Water, Vol.9, Issue 11, 885, 2017.
33.吳瑞賢、劉日順、張聖瑜、蘇家陞、陳佩螢,「建立水旱作混植區之地表水與地下水聯合灌溉管理模式」,農業工程學報,第64卷,第1期,第60-90頁,2018。
34.行政院農業委員會,農田水利新南向政策輸出技術評估規劃(計畫編號:106農科-8.1.4-利-b1),106年度農業科技計畫研究報告,2017。
35.行政院農業委員會,灌溉排水營運管理,第三版,2003。
36.甘俊二、鄭俊澤、張煜權,「超量灌溉對環境影響之研究」,中國農業工程學會,1996。
37.Smith M., Allen R., Monteith J.L., Perrier A., Pereira S. L., Segeren A., “Expert consultation on revision of FAO methodologies for crop water requirements”, Land and Water Development Division, Food and Agriculture Organization of United Nations, Rome, Italy, 1992.
38.施嘉昌,「排水工程」,國立編譯館,台北市,1988。
39.施嘉昌、曹以松、甘俊二、徐玉標,「灌溉排水原理」,中央圖書出版社,1982。
40.徐年盛、黃浩烈、吳呈懋、鄭文明,「臺灣地區水田面積遞減後對地下水補注衝擊評估」,推廣水田生態環境保護及灌溉營運管理制度改進計畫報告(計畫編號: 94農發-5.1-利-05),行政院農業委員會,台北市,2005年12月。
41.連宛渝,「氣候變遷對臺灣水稻灌溉需水量及潛能產量之影響」,國立臺灣大學農業工程學系,碩士論文,民國89年。
42.姚銘輝、陳守泓,「利用渦流相關系統量測水稻田蒸發散量及作物係數」,2005水稻田農業多樣性機能研討會,第227-240頁,台中市, 2005年5月25日。
43.Allen R. G., Pereira L.S., Raes D., Smith M., “Crop evapotranspiration- Guidelines for computing crop water requirements”, FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of United Nations, Rome, Italy, pp.104-126, 1998.
44.Cabangon R. J., Tuong T. P. and Abdullah N.B., “Comparing water input and water productivity of transplanted and direct-seeded rice production systems”, Agricultural Water Management, Vol.57, Issue 1, pp. 11-31, 2002.
45.陳世楷,「水稻田入滲試驗與數值模擬」,國立臺灣大學農業工程學系,博士論文,1999。
46.Sharma P. K. and De Datta S. K., “Effects of puddling on soil physical properties and processes”, Soil Physics and Rice, pp. 217-234. International Rice Research Institute(IRRI), Los Banos, Philippines, 1985.
47.Bear J., Hydraulics of Groundwater, Dover Publications, INC., Mineola, New York, 1979.
48.蔡欣妤,「以系統動力模式評估農業灌溉系統之研究」,國立中央大學土木工程學系,碩士論文,2009。
49.張聖瑜,「田間精密灌溉用水模式及管理機制之建立」,國立中央大學土木工程學系,碩士論文,2015。
50.陳佩螢,「建立水旱作混植區之地表水與地下水聯合灌溉管理模式」,國立中央大學土木工程學系,碩士論文,2017。
51.陳世偉,「區域多元化水資源調配之研究」,國立中央大學土木工程學系,博士論文,2007。
52.蘇家陞,「水稻旱作混植輪區精密灌溉用水模式建立」,國立中央大學土木工程學系,碩士論文,2016。
53.行政院農業委員會,「種水田增加滲漏效率之技術性探討」,2002。
54.甘俊二,「臺灣傳統水稻一期作淺水栽培之排水口控制水深」,2000。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔