(34.237.124.210) 您好!臺灣時間:2021/02/25 18:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃齡慧
研究生(外文):Ling-Hui Huang
論文名稱:超級MJO事件之濕靜能收支分析
論文名稱(外文):A Moist Static Energy Budget Analysis of Super Madden-Julian Oscillation Events
指導教授:余嘉裕余嘉裕引用關係
指導教授(外文):Jia-Yuh Yu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣科學學系
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:70
中文關鍵詞:溼靜能
外文關鍵詞:Moist Static Energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
前人研究結果顯示,在全球暖化的情境之下,Madden-Julian oscillation (MJO)會隨之增強。因此本篇利用對於過去極端MJO個案進行能量方程收支分析,探討其水平及垂直結構的合成特性。並且將其與一般MJO比較,歸納出造成MJO得以增強為極端個案之原因。
超級MJO事件的定義係利用Wheeler-Hendon所提出的MJO指數以及降雨強度作為篩選條件。當MJO指數於降雨相位(第2, 3, 4, 5相位)時,其振幅大於氣候平均兩倍標準差且持續兩個相位以上,且其降雨峰值位於研究目標區域(5°S-5°N, 55°E-85°E)超過9mm/day以上,則定義此事件為超級MJO事件。根據上述定義條件,於1998年至2014年間,共選出六個超級MJO個案。
利用此六個案合成分析結果顯示,超級MJO的週期較一般(氣候平均)MJO短 (42.8 vs. 46天),表示超級MJO東傳的速度增快。同時,從合成對流垂直結構特性發現,一般MJO事件為波數1.5的結構,但超級MJO事件則呈現波數1的結構,可能與超級MJO事件產生了較強且範圍較廣之對流系統,以及其東傳速度較快有關。此外,在濕靜能(Moist static energy)收支分析中,一般MJO事件以及超級MJO事件間最大差異在於第八相位的表現。在超級MJO事件中,濕靜能水平平流項貢獻(負貢獻)減弱,導致濕靜能得以於氣柱中累積,有利於下個相位中產生較強MJO事件,與粗濕穩定度(Gross moist stability)相位分析結果一致。本研究顯示,監測第負七相位時MJO的風場和濕靜能收支可能是預報強MJO個案的前兆。
Previous studies indicated that the MJO intensity increases as the earth’s climate becomes warmer. In this study, the column-integrated moist static energy (MSE) budget is employed to investigate the composited horizontal and vertical characteristics of super MJO events and to explore the differences between mean state (climatologically-mean) and super MJOs. Using the Wheeler-Hendon’s MJO index as a metric, along with precipitation intensity, from the ERA-interim reanalysis data and TRMM satellite-retrieved data during the period from 1998 to 2014, a total of 6 super Madden-Julian Oscillation (MJO) cases is identified. We define a super MJO case when i) the MJO index is over two standard deviations above the mean value for at least two consecutive phases over the Indo-Western-Pacific sector; and ii) the peak precipitation intensity is greater than 9mm/day over the targeted equatorial Indian Ocean domain (5°S-5°N, 55°E-85°E).
The column moist static energy (MSE) budget analysis provides a quantitative phase-to-phase comparison between mean state and super MJOs. It is found that, aside from magnitude differences, the averaged period of super MJOs is notably shorter than that of mean state MJOs (42.8 vs. 46 days), implying a faster eastward propagating speed for super MJOs. Moreover, the super MJOs exhibit a wavenumber 1 composited structure in Q1 (apparent heat source) and Q2 (apparent moisture sink); while the mean state MJOs show a wavenumber 1.5 composited structure. Furthermore, the greatest contrast between super and mean state MJOs appears at nagetive phase 7 when the accumulation of column MSE is particular strong in super MJOs due to the very weak lateral export of MSE (i.e., very weak negative contribution from the horizontal advection of MSE), which is consistent with the results from GMS (gross moist stability) plane. This study suggests that monitoring the column MSE budget at nagetive phase 7 could be served as a precursor to predict the occurrence of a strong (or super) MJO case.
摘要 i
Abstract ii
Acknowledgement iv
Table of Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 4
2.1. Data sources 4
2.2. MJO Index 5
2.3. Moist Static Energy Budget 7
2.4. Apparent heat source (Q1) and apparent moisture sink (Q2) 8
Chapter 3 Climatology of MJOs 10
3.1. Seasonal and Inter-annual variations 10
3.2. Annual-mean characteristics of MJO 13
3.3. MSE Budget analysis 17
Chapter 4 Composite Features of Super MJOs 21
4.1. Space-time characteristic 22
4.2. MSE Budget analysis 26
4.3. GMS-plane analysis 29
Chapter 5 Summary and Discussion 33
Reference 35
Appendix A: Plots of individual super MJOs 37
Appendix B: Plots of Source term in MSE budget 43
Appendix C: Plots of the time evolution of MJO strength in different season 50
Adames, Á.F.; Kim, D.; Sobel, A.H.; Del Genio, A.; Wu, J. Characterization of moist processes associated with changes in the propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst. 2017, 9, 2946–2967.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.
Duchon, C.E., 1979: Lanczos Filtering in One and Two Dimensions. Journal of Applied Meteorology, 18, 1016-1022.
Hendon, H. H., C. Zhang, and J. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 2538–2550.
Inoue, K., and L. E. Back, 2015a: Column-integrated moist static energy analysis on various time scales during TOGA COARE. J. Atmos. Sci., 72, 1856–1871, doi:10.1175/JAS-D-14-0249.1.
Inoue, K., and L. E. Back, 2015b: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. J. Atmos. Sci., 72, 4148–4166, doi:10.1175/JAS-D-15-0092.1
Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating vs. nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111–125, doi:10.1175/JCLI-D-13-00084.1.
Madden, and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708, doi:10.1175/1520-0469(1971)028,0702:DOADOI.2.0.CO;2.
Madden, and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 1109–1123, doi:10.1175/1520-0469(1972)029,1109: DOGSCC.2.0.CO;2.
Madden, R. A., 1986: Seasonal variations of the 40–50-day oscillation in the tropics. J. Atmos. Sci., 43, 3138–3158, doi:10.1175/1520-0469(1986)043,3138:SVOTDO.2.0.CO;2.
Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837, https://doi.org/10.1175/1520-0493(1994)122,0814: OOTDTO.2.0.CO;2.
Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12.
Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650–3665.
Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 4276–4291, doi:10.1175/JAS-D-14-0052.1.
Tang, Y., and B. Yu, 2008: MJO and its relationship to ENSO. J. Geophys. Res., 113.D14106, doi:10.1029/2007JD009230.
Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627, https:// doi.org/10.1175/1520-0469(1973)030,0611:DOBPOT.2.0.CO;2
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔