(3.238.7.202) 您好!臺灣時間:2021/02/26 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄒逸凱
研究生(外文):Yi-Kai Zou
論文名稱:考量時間電價之家用電器排程規劃
論文名稱(外文):Optimal Scheduling of Household Appliances under Time-of-Use Pricing
指導教授:王啓泰
指導教授(外文):Chi-Tai Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:工業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:61
中文關鍵詞:智慧電表時間電價家用電器排程混合整數規劃
外文關鍵詞:Smart meterTime-of-useHousehold appliances schedulingMixed-Integer Programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  目前台灣電廠仍以高汙染的火力發電及高危險的核能為主,屬於集中式發電。近年來,政府除了積極發展再生能源外,也努力將電網轉型朝向分散式發電。為了解決缺電的問題及避免擴增電廠的考量下,政府開始反思由電力需求端進行能源管理。為了使電網的備轉容量更加穩定,台電提供不同的「時間電價」的方案,引導用戶改變用電行為,將用電從高峰轉移至非高峰時段,未來也持續計畫提供更多的電價方案推行至住宅區,以達到削峰填谷之目的。因應能源轉型所帶來的衝擊,推動智慧電網發展儼然成為當務之急。然而,智慧電表在電網中扮演關鍵的角色,並預期結合時間電價調整民眾用電行為,使其發揮最大之效益。因此,在可見的未來裡,家庭能源管理將越顯重要。
  基於上述未來趨勢及政策考量,本研究將問題定義在台電所提供的時間電價方案下,進行家用電器排程規劃,並且建立數學模型,使用混合整數規畫求解。本研究的目的為找出合適的家用電器操作時間,同時將使用者的用電行為考慮進模型中。在研究的情境設計上,此研究經由多次的家庭訪談後,採用台灣常見的家用電器與電器使用方式作為參考資料。再利用電腦實驗的方式得到結果,此研究將會分析不同種類的電器對於整體電價的影響程度,並且針對使用者可接收不方便性的容忍度進行調整分析。
  有別於其它的相關研究,此研究的主要貢獻在於量測使用者不方便性的想法創新。依據不同使用者的使用喜好,利用不方便性矩陣與不方便性可接收容忍度的設計,使數學模型更貼近真實使用的情況。另外,本研究將會根據實驗結果,對於採用時間電價的使用者給予實質上的使用建議,並且在本研究的最後討論未來相關可行的延伸研究。
At present, Taiwan’s main energy supply consists of thermal and nuclear power generated in a centralized manner. The government has established plans to decentralize power generation and incorporate renewable energy into the power system. To resolve power shortage while avoiding building more power plants at the same time, the government has begun to manage energy consumption from the demand side. By using the Time-of-Use (TOU) pricing to alter consumer behavior, the government can better stabilize operating reserves during energy shortage. In addition, Taipower has plans to offer TOU pricing scheme in the residential sector. In smart grid (SG), smart meters play an important role in enabling TOU. Once the use of smart meters has expanded, home energy management will be more important.
Consequently, this research studies the problem of scheduling household appliances under TOU, and builds a mathematical model using mixed-integer programming to solve the problem. The purpose is to find appropriate scheduling under TOU pricing, while taking consumer behaviors in household appliances into consideration. This research concerns a typical Taiwanese family’s electricity consumption behavior as the basis for its scenario. The computer experiment for this research analyzes the relationship between the different types of appliances and electricity cost fluctuations, and adjusts the acceptable inconvenience range.
The contribution that this research makes is for a new concept of measuring inconvenience. By using an inconvenience matrix and acceptable tolerance level, decided by consumer preference, it makes the model more realistic and humanized. At the end of the paper, this research will give the consumers substantial suggestions to choose TOU pricing, and discuss the extent of the research in the foreseeable future.
中文摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables vii
Chapter 1. Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Purpose 3
1.3 Research Framework 3
Chapter 2. Background Information and Literature Review 4
2.1 Electricity Consumption in Taiwan 4
2.2 Development of Smart Grid in Taiwan 9
2.3 Scheduling Electricity Consumption for Household Appliances 12
Chapter 3. Problem Statement and Research Methodology 18
3.1 Problem Statement 18
3.2 Research Methodology 22
Chapter 4. Mathematical Model 24
4.1 Assumptions 24
4.2 Symbol Definition 25
4.3 Mathematical Model 26
Chapter 5. Computer Experiment and Analysis 29
5.1 Data Collecting and Compaction 29
5.2 Scenario Design 31
Chapter 6. Conclusion 43
References 46
[1] Bektas, Z., Kayalica, M. O. (2015). Energy Demand Side Management in the Lack of Smart Grids. Green Energy and Technology, 157-170.
[2] Bureau of Energy. (2016). Energy Statistics Handbook. Available from https://www.moeaboe.gov.tw/ECW_WEBPAGE/FlipBook/EnergyStaHandBook/mobile/index.html#p=I. Accessed 11 April 2018.
[3] Bureau of Energy. (2017). Smart Grid Master Plan. Available from https://www.moeaboe.gov.tw/ecw/populace/content/SubMenu.aspx?menu_id=1946. Accessed 12 April 2018.
[4] Central Intelligence Agency. (2016). The World Factbook. Available from https://www.cia.gov/library/publications/the-world-factbook/rankorder/2233rank.html. Accessed 26 April 2018.
[5] Chen, Y-T. (2017). The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector - A Case Example of Taiwan. Sustainability, 9(8), 1-16.
[6] Easton, M., Carrodus, G., Delaney, T., McArthur K., Smith, R. (2013). Oxford Big Ideas Geography/History 9. Oxford University, 269-313.
[7] Garroussi, Z., Ellaia R., Talbi, E-G. (2016). Appliance Scheduling in a Smart Home Using a Multi-objective Evolutionary Algorithm. International Renewable and Sustainable Energy Conference.
[8] Hawaiian Electric (2018). Demand Response. Available from https://www.hawaiianelectric.com/save-energy-and-money/demand-response. Accessed 21 April 2018.
[9] Ivanov, M. (2015). Household Appliances Scheduling for Efficient Renewable Energy Consumption. Journal of Emerging Trends in Computing and Information Sciences, 6(7), 355-362.
[10] Koutsopoulos, I., Tassiulas, L. (2011). Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy Management. Proceedings of the 2nd International Conference on Energy-Efficient Computing and Networking, 41-50.
[11] Lin, C-C., Deng, D-J., Liu, W-Y., Chen, L. (2017). Peak Load Shifting in the Internet of Energy with Energy Trading among End-Users. IEEE Access, 5, 1967-1976.
[12] Longe, O. M., Ouahada, K., Rimer, S., Ferreira, H. C. (2015). Optimization of Energy Expenditure in Smart Homes under Time-of-Use Pricing. IEEE Innovative Smart Grid Technologies - Asia, 1-6.
[13] Lu, X., Zhou, K., Chan, F. T. S., Yang, S. (2017). Optimal Scheduling of Household Appliances for Smart Home Energy Management Considering Demand Response. Natural Hazards, 88(3), 1639-1653.
[14] Mikhaylidi, Y., Naseraldin, H., Yedidsion, L. (2015). Operations Scheduling under Electricity Time-Varying Prices. International Journal of Production Research, 53(23), 7136-7157.
[15] Monaghan, A. (2016). A Short History of Unclear Fission. Nuclear power. Available from https://goo.gl/vur7HA. Accessed 22 February 2018.
[16] National Aeronautics and Space Administration, NASA (2017). Global Land-Ocean Temperature Index. Available from https://goo.gl/ks6hea. Accessed 06 March 2018.
[17] Palensky, P., Dietrich, D. (2011). Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Transaction on Industrial Informatics, 7(3), 381-388.
[18] Qayyum, F. A., Naeem, M., Khwaja, A. S., Anpalagan, A. (2015). Appliance Scheduling Optimization in Smart Home Networks comprising of Smart Appliances and a Photovoltaic Panel. IEEE Electrical Power and Energy Conference.
[19] Rahmani-Andebili, M. (2017). Scheduling Deferrable Appliances and Energy Resources of a Smart Home Applying Multi-time Scale Stochastic Model Predictive Control. Sustainable Cities and Society, 32, 338-347.
[20] Saha, B. (2013). Scheduling of Appliances based on Sensitivity to Dynamic Pricing in a Smart Grid. North Dakota State University. Available from https://library.ndsu.edu/ir/handle/10365/23097. Accessed 06 March 2018.
[21] Shrouf, F., Ordiere-Meré, J., García-Sánchez, A., Ortega-Mier, M. (2014). Optimizing the Production Scheduling of a Single Machine to Minimize Total Energy Consumption Costs. Journal of Cleaner Production, 67, 197-207.
[22] Taiwan Power Company (2016). Taiwan Power Company Rate Schedules. Available from https://www.taipower.com.tw/en/page.aspx?mid=317. Accessed 05 May 2018.
[23] United Nations Framework Convention on Climate Change, UNFCCC (2015). Paris Agreement. Available from https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf. Accessed 01 April 2018.
[24] Veras, J. M., Silva, I. R. S., Pinheiro, P. R., Rabelo, R. A. L. (2018). Towards the Handling Demand Response Optimization Model for Home Appliances. Sustainability, 10(3), 616.
[25] Xia, X., Setlhaolo, D. (2014). Optimal Scheduling of Household Appliances Incorporating Appliance Coordination. Energy Procedia, 61, 198-202.
[26] Yuce, B., Rezgui, Y., Mourshed, M. (2016). ANN–GA Smart Appliance Scheduling for Optimized Energy Management in the Domestic Sector. Energy and Buildings, 111, 311-325.
Chinese Reference

[27] 工研院(2018)。節能標章。經濟部能源局。網站:http://www.energylabel.org.tw/,取自2018年4月10日。
[28] 台灣電力公司(2016)。營業規則。網站:https://www.taipower.com.tw/tc/page.aspx?mid=158,取自2017年12月20日。
[29] 行政院主計總處(2017)。家庭主要設備普及率。中華民國統計資訊網站。網站:https://www.stat.gov.tw/mp.asp?mp=4,取自2018年5月2日。
[30] 吳大任、梁啟源、林師模、劉錦龍、王銘正、田佳芬、張博涵(2017)。臺灣人口結構變遷對住宅用電需求之影響。臺灣能源期刊,第四卷,第二期,第183-198頁。
[31] 林素琴、林志勳(2017)。我國住宅部門電力使用研究。臺灣能源期刊,第四卷,第三期,第285-302頁。
[32] 張語羚(2017)。政府砸兩百五十億衝智慧電表。工商時報。網站:http://www.chinatimes.com/newspapers/20170829000051-260202,取自2018年2月10日。
[33] 張耀仁、蕭子訓、胡瑋元、張嘉諳(2017)。非核家園與再生能源政策對我國電力結構之影響。臺灣能源期刊,第四卷,第二期,第131-144頁。
[34] 許志義、林俊儒(2015)。智慧電表用戶選用需求面管理方案關鍵因素之權重分析。臺灣能源期刊,第二卷,第二期,第209-226頁。
[35] 經濟部能源局(2016)。2016年能源產業技術白皮書。經濟部能源局。第131-146頁。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔