(3.238.7.202) 您好!臺灣時間:2021/03/01 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高士鈞
研究生(外文):Shih-Chun Kao
論文名稱:建立非對稱市場潛力及非對稱自身價格函數之替代品重新探討RCM和CC環境
論文名稱(外文):Re-investigating RCM and Category Captainship for Substitute Products under Non-Symmetric Market Potential and Non-Symmetric Own-Price Sensitivity
指導教授:沈國基沈國基引用關係
指導教授(外文):Gwo-Ji Sheen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:工業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:104
中文關鍵詞:品類管理品類統帥非對稱市場潛力對稱互補性非對稱自身價 格函數定價及貨架空間決策
外文關鍵詞:Category CaptainshipRCMcategory managementnon-Symmetric Own-Price Sensitivitynon-Symmetric Market Potential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
品類指的是在市面上被認為可以互相取代的商品種類或是服務,故如何做好品類管理是個很重要的議題。在傳統上,零售商通常都是關注於品牌的管理,認為品牌才是吸引消費者的重要元素,隨著販賣的商品推陳出新,在貨架空間漸漸的供不應求後,如何有效率的使用有限的貨架空間是個很重要的議題。便有學者提出Category Captainship (CC)的品類管理,此種的品類管理就是著重於category captain可以自行在有限的貨架空間下訂定此配銷通路裡的商品價格。故我們的研究在探討在有限的貨架空間下在使用傳統的零售品類管理(Retail Category Management)或使用品類統帥(Category Captainship)下對於零售商及兩個製造商的商品銷售數量的影響以及價格決策,進而討論零售商、Category Captain和Non-captain製造商應該要選擇何種品類管理較有利。
本研究沿用Singh and Vives (1984)所提出的效用函數推導出非對稱的市場潛力及非對稱自身價格函數的需求函數,並採用Kurtulus and Toktay (2011)的作法,使用無差異曲線來探討零售商、Category Captain和Non-captain製造商在兩個商品有不同的市場潛力和自身價格函數的條件下應該要選擇RCM還是CC品類管理才較有利,並且給予一些管理上的建議。
The category is the types of goods or services that are considered to be substitutable or complementary in the market. Therefore, how to manage the category is an important issue. Traditionally, retailers usually focus on the management of the brand, thinking that the brand is the most important element to attract consumers. With the new product increase quickly, how to efficiently use the limited shelf space after the shelf space is gradually in short supply, it is be very concerned about. Then some scholars have proposed a category management called as category captainship (CC) which is focused on the category captain’s ability to set the price of goods in the distribution channel under the limited shelf space. Therefore, our research explores the effect of using traditional retail category management or CC under the limited shelf space on retailer and two manufacturers’ pricing decision and quantities of products, and then discuss the retailer, category captain and non-captain manufacturers should choose whether RCM or CC.
In this study, we derived the non-symmetric demand function from the utility function in Singh and Vives (1984) and use the method of Kurtulus and Toktay (2011) to use indifference curves to explore retailer, category captain and non-captain manufacturers should choose which category management is more favorable.
Contents
摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Research background and motivation 1
1.2 Research objectives 7
1.3 Research methodology 8
Chapter 2 Literature Review 10
2.1 Researches for the utility function and demand function 10
2.2 Researches for the shelf space 11
2.3 Researches for Retailer Category Management and Category Captainship scenario 12
Chapter 3 The model of non-symmetric demand function 15
3.1 The model under non-symmetric demand function in RCM scenario 16
3.2 The model under non-symmetric demand function in category captainship scenario 19
Chapter 4 Analysis of Substitute Products 22
4.1 RCM scenario 22
4.2 CC scenario 27
4.3 The impact of CC scenario 31
4.4 Numerical analysis 35
Chapter 5 Conclusions 56
5.1 Conclusions and contributions 56
5.2 Future researches 57
Reference 58
Appendix A 60
Appendix B.1 61
Appendix B.2 (Wholesale Price Game in RCM) 64
Appendix B.3. Proof of Proposition 1 69
Appendix C.1 72
Appendix C.2 (Second Manufacturer’s Wholesale Price in CC) 75
Appendix C.3. Proof of Proposition 2 79
Appendix D. 82
Appendix E. The auxiliary expressions for the equations shown in the Propositions 91

List of Figures
Figure 3-1 Background of the model 15
Figure 4-1 A representation of relative profits and consumer surplus 34
Figure 4-2 Indifference curve for k=0.0,a/b=0.4 36
Figure 4-3 Indifference curve for k=0.0,a/b=0.8 37
Figure 4-4 Indifference curve for k=0.0,a/b=1.0 38
Figure 4-5 Indifference curve for k=0.0,a/b=1.6 39
Figure 4-6 Indifference curve for k=0.3,a/b=0.4 40
Figure 4-7 Indifference curve for k=0.3,a/b=0.8 41
Figure 4-8 Indifference curve for k=0.3,a/b=1.0 41
Figure 4-9 Indifference curve for k=0.3,a/b=1.2 42
Figure 4-10 Indifference curve for k=0.3,a/b=1.6 43
Figure 4-11 Indifference curve for k=0.6,a/b=0.4 44
Figure 4-12 Indifference curve for k=0.6,a/b=0.8 45
Figure 4-13 Indifference curve for k=0.6,a/b=1.0 45
Figure 4-14 Indifference curve for k=0.6,a/b=1.2 46
Figure 4-15 Indifference curve for k=0.6,a/b=1.6 47
Figure 4-16 Indifference Curves for the Retailer with different a/b 48
Figure 4-17 Indifference Curves for the retailer with different δ2 50
Figure 4-18 All case under indifference curves for k=0.3, δ1=0.5 53
Figure 4-19 All case under indifference curves for k=0.3, δ1=0.5 54
Figure 4-20 All case under indifference curves for k=0.3, a=0.5 55

List of Tables
Table 4-1 The numerical results for various a/b under RCM scenario (with δ1=0.5, δ2=0.5 ,θ=0.8, k=0.3 ,a=5,c=1). 24
Table 4-2 The numerical results for various k under RCM scenario (with δ1=0.5, δ2=0.5 ,θ=0.8 ,a=5, b=5 c=1). 24
Table 4-3 The numerical results for various θ under RCM scenario (with δ1=0.5, δ2=0.5 , k=0.3 ,a=5, b=5 c=1). 25
Table 4-4 The numerical results for various δ1/δ2 under RCM scenario (with δ1=0.5, k=0.3, a=5, b=5 , c=1 and θ=0.8). 26
Table 4-5 The numerical results for various a/b under CC scenario (with δ1=0.5, δ2=0.5 ,θ=0.8, k=0.3 ,a=5,c=1, ∅=0.8) 28
Table 4-6 The numerical results for various k under CC scenario (with δ1=0.5, δ2=0.5 ,θ=0.8 ,a=5, b=5 c=1, ∅=0.8). 29
Table 4-7 The numerical results for various θ under CC scenario (with δ1=0.5, δ2=0.5 , k=0.3 ,a=5, b=5 c=1, ∅=0.8). 29
Table 4-8 The numerical results for various δ1/δ2 under CC scenario (withδ1=0.5, k=0.3, a=5, b=5 c=1 and θ=0.8, ∅=0.8). 30
Table 4-9 All cases under each condition. 53
[1] Abbott, H., & Palekar, U. S. Retail replenishment models with display-space elastic demand. European Journal of Operational Research, 186(2), 586-607, 2008.
[2] Amir, R., & Jin, J. Y. Cournot and Bertrand equilibria compared: substitutability, complementarity and concavity. International Journal of Industrial Organization, 19(3-4), 303-317, 2001.
[3] Bultez, A., & Naert, P. SH. ARP: Shelf allocation for retailers' profit. Marketing science, 7(3), 211-231, 1988.
[4] Choi, S. C. Price competition in a channel structure with a common retailer. Marketing Science, 10(4), 271-296, 1991.
[5] Corstjens, M., & Doyle, P. A model for optimizing retail space allocations. Management Science, 27(7), 822-833, 1981.
[6] Hübner, A. H., & Kuhn, H. Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management. Omega, 40(2), 199-209, 2012.
[7] Kurtulus, M., & Toktay, B. Category captainship: Outsourcing retail category management. Social Science Electronic Publishing, Inc, 23, 2005.
[8] Kurtuluş, M., & Toktay, L. B. Category captainship vs. retailer category management under limited retail shelf space. Production and Operations Management, 20(1), 47-56, 2011.
[9] Martín‐Herrán, G., Taboubi, S., & Zaccour, G. The Impact of Manufacturers' Wholesale Prices on a Retailer's Shelf‐Space and Pricing Decisions. Decision Sciences, 37(1), 71-90, 2006.
[10] Misra, K., Nijs, V., & Hansen, K. Selecting a category captain: The impact on manufacturers, retailers, and consumers (Doctoral dissertation, School of Management, University of California, San Diego), 2009.
[11] McGuire, T. W., & Staelin, R. An industry equilibrium analysis of downstream vertical integration. Marketing science, 2(2), 161-191, 1983.
[12] Quelch, J. A., & Kenny, D. Extend profits, not product lines. Make Sure All Your Products Are Profitable, 14, 1994.
[13] Singh, N., & Vives, X. Price and quantity competition in a differentiated duopoly. The RAND Journal of Economics, 546-554, 1984.
[14] Vives, X. On the efficiency of Bertrand and Cournot equilibria with product differentation. Journal of Economic Theory, 36(1), 166-175, 1985.
[15] Wang, S. Y., Sheen, G. J., & Yeh, Y. Pricing and shelf space decisions with non-symmetric market demand. International Journal of Production Economics, 169, 233-239, 2015.
[16] Wang, Y., Raju, J. S., & Dhar, S. K. The choice and consequences of using a category captain for category management. Office of Research, Singapore Management University, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔