(3.232.129.123) 您好!臺灣時間:2021/02/26 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:薛登允
研究生(外文):Teng-Yun Hsueh
論文名稱:可撓曲矽晶基材上製備矽單晶奈米線陣列及其光感測特性之研究
指導教授:鄭紹良
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:83
中文關鍵詞:奈米線光感測器可撓曲金屬催化蝕刻無電鍍金屬催化蝕刻
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這項研究中,我們通過結合沉積銀奈米顆粒進行金屬催化蝕刻和氫氧化鉀鹼性溶液蝕刻的方法,成功地在(001)矽單晶基材上製備大面積準直排列的尖錐狀矽單晶奈米線陣列,並藉由調節蝕刻條件控制尖錐狀矽單晶奈米線的長度與形貌,此外本實驗亦結合無電鍍金屬催化蝕刻法將矽基材薄化,使之具有可撓曲的性質,更在其上製備尖錐狀矽單晶奈米線陣列。接著為了製備各式鎳/蕭基接面結構之光感測元件,本實驗分別蒸鍍鎳金屬和鋁金屬在試片的正面與背面,並進行一系列的量測。
由 SEM 和TEM 可檢測尖錐狀矽單晶奈米線具有相當良好的長寬比和異向性。在可見光-近紅外光譜測量中,所製備之尖錐狀矽單晶奈米線陣列從可見光範圍到紅外光範圍皆表現出優異的抗反射能力,其抗反射性能的增強可歸因於尖錐狀矽單晶奈米線對光捕捉和漸變折射率。在近红外光偵測系統研究中,所製備之各式鎳/矽蕭基接面結構光感测元件皆在無任何外加偏壓下進行量測,並以940 m近红外光燈源進行照光。實驗的結果表示,本研究所製備的鎳/尖錐狀矽單晶奈米線蕭基接面結構具有相當優異的靈敏度與響應時間,且將其製備成超薄可撓曲元件時仍保有幾乎相同的響應時間。
In this study, we present the successful fabrication of vertically-aligned, tapered Si nanowire arrays on (001)Si substrates by using a method combining Ag-nanoparticle catalytic etching and KOH etching process. The length and morphology of the tapered Si nanowires can be readily controlled by adjusting the etching conditions. Furthermore, we combined the electroless metal-catalytic etching to make the substrate thinning and have flexible properties. UV-Vis-IR spectroscopic measurements showed that the produced tapered Si nanowires exhibited excellent broadband antireflection properties from the UV to near-infrared (NIR) wavelength range. The optoelectronic study showed that the produced tapered Si nanowire-based NIR photodetector was able to operate at zero external voltage bias and exhibited high sensitivity to 940 nm NIR light and a fast response speed. The obtained results suggest that the facile approach proposed here promises to be applicable for fabricating various high performance Si-based NIR/IR photodetectors.
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 超薄可撓曲矽單晶基材 3
1-2-1 超薄可撓曲基材之製程 3
1-2-2 超薄可撓曲基材之應用 4
1-3 矽單晶奈米線陣列之製備 5
1-4尖錐狀矽單晶奈米線 7
1-5 紅外光光感測機制 8
1-5-1 歐姆接觸與蕭基接觸 8
1-5-2 蕭基接觸之光感測機制 9
1-6 紅外線光感測器 10
1-7 研究動機及目標 11
第二章 實驗步驟及儀器設備 13
2-1 實驗步驟 13
2-1-1 矽晶基材使用前處理 13
2-1-2 製備超薄可撓曲矽單晶基材 13
2-1-3 結合無電鍍金屬催化蝕刻法與金屬催化蝕刻法製備矽單晶奈米線陣列 14
2-1-4 以氫氧化鉀鹼溶液製備尖錐狀矽單晶奈米線陣列 14
2-1-5 鎳/矽尖錐狀奈米線蕭基接面結構製備 15
2-2 試片分析 15
2-2-1 掃描式電子顯微鏡 15
2-2-2 穿透式電子顯微鏡 16
2-2-3 可見光-近紅外光譜儀 16
2-2-4 影像式水滴接觸角量測儀 17
2-2-5 近紅外光偵測系統 17
第三章 結果與討論 18
3-1製備矽單晶奈米線陣列 18
3-2尖錐狀矽單晶奈米線陣列 19
3-2-1 尖錐狀矽單晶奈米線陣列之製備 19
3-2-2 矽單晶奈米線陣列尖錐化的水滴接觸角變化 20
3-2-3 可見光-近紅外光積分球光譜儀分析 21
3-3 以無電鍍金屬催化蝕刻法製備超薄矽單晶基材並結合金屬催化蝕刻法在其上製備矽單晶奈米線陣列 22
3-3-1超薄可撓曲矽單晶基材之製備與性質量測 23
3-3-2 在超薄可撓曲矽單晶基材上製備矽單晶奈米線陣列 25
3-4 近紅外光偵測系統 27
3-4-1 鎳/尖錐狀矽單晶奈米線之蕭基接面製備 27
3-4-2 鎳/矽單晶奈米線蕭基接面結構與鎳/尖錐狀矽單晶奈米線蕭基接面結構之光感測特性量測與探討 29
3-4-3 在超薄矽單晶基材上之鎳/矽單晶奈米線蕭基接面結構與鎳/尖錐狀矽單晶奈米線蕭基接面結構之光感測特性量測與探討 31
3-4-4 光偵測器響應度與響應時間 32
第四章 結論與未來展望 34
參考文獻 36
表目錄 41
表3-1鎳/矽蕭基接面結構與各式文獻之光感測器 42
圖目錄 43
[1] S. L. Cheng, C. H. Chung and H. C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001)Si substrates,” J. Electrochem. Soc.155.11 (2008) D711.
[2] W. I. Park and G. C. Yi, “Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN,” Adv. Mater. 16 (2004) 87.
[3] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12 (2012) 1690.
[4] S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12 (2012) 2971.
[5] M. Ge, J. Rong, X. Fang and C. Zhou, “Porous doped silicon nanowires for lithium ion battery anode with long cycle life,” Nano Lett. 12 (2012) 2318.
[6] S. L. Wu, L. Wen, G. A. Cheng, R. T. Zheng and X. L. Wu, “Surface morphology-dependent photoelectrochemical properties of one-dimensional Si nanostructure arrays prepared by chemical etching,” ACS Appl. Mater. Interfaces 5 (2013) 4769.
[7] W. C. Tian, Y. H. Ho, C. H. Chen and C. Y. Kuo, “Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography,” Sens. Basel. 13 (2013) 865.
[8] P. Livi, M. Kwiat, A. Shadmani, A. Pevzner, G. Navarra, J. Rothe, A. Stettler, Y. Chen, F. Patolsky and A. Hierlemann, “Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications,” Anal. Chem. 87 (2015) 9982.
[9] B. R. Huang, Y. K. Yang, T. C. Lin and W. L. Yang, “A simple and low-cost technique for silicon nanowire arrays based solar cells,” Sol. Energy Mater Sol. Cells 98 (2012) 357.
[10] J. Bae, H. Kim, X. M. Zhang, C. H. Dang, Y. Zhang, Y. J. Choi, A. Nurmikko and Z. L. Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnol. 21 (2010) 095502.
[11] Y. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu and Z. L. Wang, “Self-Powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: An approach for photosensing below bandgap energy,” Adv. Mater. 30 (2018) 1705893.
[12] 曹. 洪清水, 孙家林, 万平玉, 贺军辉, “基于金/硅纳米线阵列肖特基结的自驱动式的可见-近红外光探测器性能研究,” Imaging Sci. Photochem. 32 (2014) 532.
[13] Y. Berencen, S. Prucnal, F. Liu, I. Skorupa, R. Hubner, L. Rebohle, S. Zhou, H. Schneider, M. Helm and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7 (2017) 43688.
[14] S. Roy, K. Midya, S. P. Duttagupta and D. Ramakrishnan, “Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation,” J. Appl. Phys. 116 (2014) 124507.
[15] F. Bai, M. Li, D. Song, H. Yu, B. Jiang and Y. Li, “Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer,” Appl. Surf. Sci. 273 (2013) 107.
[16] K. S. Do, T. h. Baek, M. G. Kang, S. J. Choi, G. H. Kang, G. J. Yu, J. C. Lee, J.-m. Myoung and H.-e. Song, “Experimental and simulation study for ultrathin (∼100 μm) mono crystalline silicon solar cell with 156×156 mm2 area,” Met. Mater. Int. 20 (2014) 545.
[17] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13 (2013) 4393.
[18] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji and C. Ye, “Flexible Si/PEDOT:PSS hybrid solar cells,” Nano Research 8 (2015) 3141.
[19] J. N. Burghartz, W. Appel, C. Harendt, H. Rempp, H. Richter and M. Zimmermann, “Ultra-thin chip technology and applications, a new paradigm in silicon technology,” Solid-State Electron. 54 (2010) 818.
[20] R. Bao, C. Wang, L. Dong, C. Shen, K. Zhao and C. Pan, “CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping,” Nanoscale 8 (2016) 8078.
[21] M. Chen, C. Pan, T. Zhang, X. Li, R. Liang and Z. L. Wang, “Tuning light emission of a pressure-sensitive Silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effects,” ACS Nano 10 (2016) 6074.
[22] B. R. Huang, J. F. Hsu and C. S. Huang, “The effects on the field emission properties of silicon nanowires by different pre-treatment techniques of Ni catalysts layers,” Diamond Relat. Mater. 14 (2005) 2105.
[23] Y. Yao, F. Li and S. T. Lee, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts,” Chem. Phys. Lett. 406 (2005) 381.
[24] A. I. Klimovskaya, O. E. Raichev, A. A. Dadykin, Y. M. Litvin, P. M. Lytvyn, I. V. Prokopenko, T. I. Kamins, S. Sharma and Y. Moklyak, “Quantized field-electron emission at 300K in self-assembled arrays of silicon nanowires,” Physica. E 37 (2007) 212.
[25] Y. J. Xing. H. F. Yan, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism,” Chem. Phys. Lett. 323 (2000) 224.
[26] Y. J. Xing. D. P. Yua, Q. L. Hang, H. F. Yana, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica. E 9 (2001) 305.
[27] H. Fang, Y. Wu, J. Zhao and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnol. 17 (2006) 3768.
[28] K. Q. P, M. L. Zhang, Xia Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, “Preparation of large-Area uniform silicon nanowires arrays through metal-assisted chemical etching,” J. Phys. Chem. C 112.12 (2008) 4444.
[29] H. Chen, H. Wang, X. H. Zhang, C. S. Lee and S. T. Lee, “Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles,” Nano Lett. 10 (2010) 864.
[30] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett. 77 (2000) 2572.
[31] K. Peng, A. Lu, R. Zhang and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18 (2008) 3026.
[32] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub and O. Elkechai, “Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution,” Appl. Surf. Sci. 255 (2009) 6210.
[33] J. Kumar and S. Ingole, “Effect of silicon conductivity and HF/H2O2 Ratio on morphology of silicon nanostructures obtained via metal-assisted chemical etching,” J. Electron. Mater. 47 (2017) 1583.
[34] S. Z. Yonghao Xiu, V. Yelundur, A. Rohatg, D. W. Hess, and C. P. Wong, “Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching,” Langmuir 24 (2008) 10421.
[35] Y. Jiang, X. Gong, R. Qin, H. Liu, C. Xia and H. Ma, “Efficiency enhancement mechanism for poly(3, 4-ethylenedioxythiophene): Poly(styrenesulfonate)/silicon nanowires hybrid solar cells Using alkali treatment,” Nanoscale Res. Lett. 11 (2016) 267.
[36] Q. Wang, Z. Tian, Y. Li, S. Tian, Y. Li, S. Ren, C. Gu and J. Li, “General fabrication of ordered nanocone arrays by one-step selective plasma etching,” Nanotechnol. 25 (2014) 115301.
[37] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai and L. J. Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnol. 18 (2007) 505305
[38] M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. Thong and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnol. 21 (2010) 205305.
[39] S. Lv, Z. Li, S. Su, L. Lin, Z. Zhang and W. Miao, “Tunable field emission properties of well-aligned silicon nanowires with controlled aspect ratio and proximity,” RSC Adv. 4 (2014) 31729.
[40] Z. G, J. Y. Jung, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” OSA 18 (2010) A286
[41] G. C. N. Ucarb, “Schottky barrier height dependence on the metal work function for p-type Si Schottky diodes,” Z Naturforsch. 59a (2004) 795.
[42] S. D. S. Chakrabarti, “Electroless Ni plating on n- and p-type porous Si for ohmic and rectifying contacts,” Semicond. Sci. Technol. 11 (1996) 1231.
[43] C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46 (2010) 633.
[44] R. Lu, C. W. Ge, Y. F. Zou, K. Zheng, D. D. Wang, T. F. Zhang and L. B. Luo, “A localized surface plasmon resonance and light confinement-enhanced near-infrared light photodetector,” Laser Photonics Rev. 10 (2016) 595.
[45] B. Y. Zheng, Y. Wang, P. Nordlander and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26 (2014) 6318.
[46] Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14 (2014) 299.
[47] P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photonics Rev. 8 (2014) 197.
[48] Z. Zhai, L. Ma, Y. Jiang, Q. Xie, F. Zhang, X. Wu and J. Gao, “Giant photosensitivity of a-C:Co/GaAs/Ag p-n-metal junctions,” Opt. Mater. Express 5 (2015) 2667.
[49] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim and H. H. Cho, “Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion,” Int. J. Heat Mass Transfer 82 (2015) 267.
[50] B. Parida, S. Kim, M. Oh, S. Jung, M. Baek, J.-H. Ryou and H. Kim, “Nanostructured-NiO/Si heterojunction photodetector,” Mater. Sci. Semicond. Process. 71 (2017) 29.
[51] D. Wu, Z. Lou, Y. Wang, Z. Yao, T. Xu, Z. Shi, J. Xu, Y. Tian, X. Li and Y. H. Tsang, “Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction,” Sol. Energy Mater. Sol. Cells 182 (2018) 272.
[52] R. Kumar and S. Chand, “Fabrication and electrical characterization of nickel/p-Si Schottky diode at low temperature,” Solid State Sci. 58 (2016) 115.
[53] B. Das, N. S. Das, S. Sarkar, B. K. Chatterjee and K. K. Chattopadhyay, “Topological insulator Bi2Se3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector,” ACS Appl. Mater. Interfaces 9 (2017) 22788.
[54] L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5 (2013) 9362.
[55] J. Yao, Z. Zheng, J. Shao and G. Yang, “Promoting photosensitivity and detectivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7 (2015) 26701.
[56] Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang and Z. Zhao, “Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions,” Small 10 (2014) 2345.
[57] P. L. Ong, W. B. Euler and I. A. Levitsky, “Carbon nanotube-Si diode as a detector of mid-infrared illumination,” Appl. Phys. Lett. 96 (2010) 033106.
[58] X. An, F. Liu, Y. J. Jung and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett 13 (2013) 909.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔