(3.237.97.64) 您好!臺灣時間:2021/03/03 07:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許哲維
研究生(外文):Che-Wei Hsu
論文名稱:固相反應法製備固態電解質Li7La3Zr2O12應用於鋰離子電池
論文名稱(外文):Solid State Synthesis of Lithium Lanthanum Zirconium Oxide as Electrolytes for Lithium-ion Batteries
指導教授:李岱洲張仍奎洪逸明
指導教授(外文):Tai-Chou LeeJeng-Kuei ChangI-Ming Hung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:147
中文關鍵詞:固態電解質鋰離子電池鋰金屬
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以固態反應法製備固態電解質Li7La3Zr2O12應用於鋰離子電池為主軸,探討摻雜不同元素、燒結溫度對材料性質和電化學特性之關聯。
實驗分為兩部分,第一部分為探討不同元素摻雜對於固態電解質Li7La3Zr2O12的影響。於900°C~1200°C的燒結溫度範圍內,由XRD顯示在摻雜鋁、鎵的情況下,900°C即可獲得純Cubic相,Cubic相Li7La3Zr2O12和Tetragonal相相比,擁有較高的離子導電率,1200°C時顯示較低的孔隙率,因此鋰離子導離子率相較其他燒結溫度更佳,鎂摻雜無法在900°C時獲得Cubic相,需加溫至1200°C時Tetragonal相才開始轉換至Cubic相,因此雜相La2Zr2O7與Li2ZrO3更容易生成,導離子率也無法與鎵摻雜相比。
本實驗第二部分探討鋰鹽LiTFSI與poly(ethylene oxide)對固態陶瓷電解質在鋰離子電池的電化學表現,相對於錠狀陶瓷固態電解質Li6.25Ga0.25La3Zr2O12,PEO與鋰鹽及Li6.25Ga0.25La3Zr2O12粉末合成的固態電解質薄膜擁有較高的鋰離子導離子率,這是因為其厚度較薄,和正負極間的介面阻抗也較錠狀固態電解質小,因此能有較佳的電池電化學表現。
In this study, we synthesized the pure phase Li7La3Zr2O12 solid electrolyte material by solid state reaction and the influences of different doping elements (Al, Ga, Mg) to the Li7La3Zr2O12 were investigated. Specific doping can reduce the phase transformation temperature, i.e. the generation of cubic phase in this study. For Gallium and Aluminum doping, we can obtain the cubic phase at 900°C. However, magnesium doping needed to sinter at 1200°C to attain cubic phases instead of tetragonal phases. When the phase transformation temperature is higher, the impurity is easy to produce because of the lithium evaporation at higher temperature. Therefore, the Mg-LLZO is easy to produce impurity La2Zr2O7 and Li2ZrO3 because of higher phases transformation temperature. Compared with magnesium and aluminum doping, Gallium doping shows the highest conductivity and crystallinity because there are no impurity in the phase when we sinters the Li7La3Zr2O12 at 1200°C.

We prepare solid hybrid electrolyte by Ga-LLZO, LiTFSI and poly(ethylene oxide). Compared with Li7La3Zr2O12 pellet electrolyte, hybrid solid electrolyte shows lower thickness and higher lithium ion conductivity. In addition, the lithium metal battery shows lower resistances after using solid hybrid electrolytes. Therefore, the hybrid electrolyte battery shows better electric performance compared with inorganic ceramic pellet electrolytes.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XVIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
第二章 文獻回顧 4
2-1 全固態電解質 4
2-1-1 全固態電解質發展 4
2-1-2 全固態電解質種類與傳導機制 13
2-2 氧化物固態電解質Li7La3Zr2O12的發展與應用 18
2-2-1 Li7La3Zr2O12 分析 22
2-2-2 Li7La3Zr2O12 元素摻雜 28
2-2-3 Li7La3Zr2O12 電池應用 41
2-3 固態陶瓷電解質Li7La3Zr2O12與高分子混雜系統發展 52
第三章 實驗方法及步驟 72
3-1 化學藥品及材料 72
3-2 實驗流程與架構 74
3-2-1 Li7La3Zr2O12 錠狀固態電解質製備 74
3-2-2 Li7La3Zr2O12粉末製備 76
3-2-3 固態電解質薄膜製備 77
3-2-4 正極材料製備 77
3-2-5 鈕扣型電池之組裝 78
3-3 材料分析與鑑定 79
3-3-1 X光繞射分析 (X-ray diffraction,XRD) 79
3-3-2 場發式掃描式電子顯微鏡 (Field Emission Gun Scanning Electron Microscope, FEI, Inspect F50) 79
3-3-3 交流阻抗 (electrochemical impedance spectroscopy, EIS) 79
3-3-4 連續循環充放電測試 (Charge and Discharge Test) 80
3-3-5 孔隙率量測 80
第四章 結果與討論 82
4-1 摻雜不同元素對L7L3Z2O12相轉移溫度的影響 82
4-1-1 掃描式電子顯微鏡及X光繞射圖譜 82
4-1-2 孔隙率分析 93
4-2 不同電池結構對電阻與電池性能的影響 94
4-3 不同固態電解質比例對電池性能的影響 107
第五章 結論 115
第六章 未來展望 117
參考文獻 118
1. Whittingham, M.S., History, evolution, and future status of energy storage. Proceedings of the IEEE, 2012. 100(Special Centennial Issue): p. 1518-1534.
2. Henderson, W.A., Glyme− lithium salt phase behavior. The Journal of Physical Chemistry B, 2006. 110(26): p. 13177-13183.
3. Zhang, P., et al., Synthesis of core-shell structured CdS@CeO 2 and CdS@TiO 2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catalysis Today, 2017. 281: p. 181-188.
4. Qian, J., et al., High rate and stable cycling of lithium metal anode. Nature communications, 2015. 6: p. 6362.
5. Bruce, P.G., et al., Li–O 2 and Li–S batteries with high energy storage. Nature materials, 2012. 11(1): p. 19.
6. Sun, J., et al., A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes. Scientific reports, 2017. 7: p. 41217.
7. Varzi, A., et al., Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. Journal of Materials Chemistry A, 2016. 4(44): p. 17251-17259.
8. Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014. 7(2): p. 513-537.
9. Zhang, J., et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016. 28: p. 447-454.
10. Brissot, C., et al., Dendritic growth mechanisms in lithium/polymer cells. Journal of power sources, 1999. 81: p. 925-929.
11. Meyer, W.H., Polymer electrolytes for lithium‐ion batteries. Advanced materials, 1998. 10(6): p. 439-448.
12. Breuer, S., et al., Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3. Journal of Materials Chemistry A, 2015. 3(42): p. 21343-21350.
13. Buschmann, H., et al., Structure and dynamics of the fast lithium ion conductor “Li 7 La 3 Zr 2 O 12”. Physical Chemistry Chemical Physics, 2011. 13(43): p. 19378-19392.
14. Awaka, J., et al., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009. 182(8): p. 2046-2052.
15. Awaka, J., et al., Neutron powder diffraction study of tetragonal Li 7 La 3 Hf 2 O 12 with the garnet-related type structure. Journal of Solid State Chemistry, 2010. 183(1): p. 180-185.
16. Cussen, E.J., Structure and ionic conductivity in lithium garnets. Journal of Materials Chemistry, 2010. 20(25): p. 5167-5173.
17. Geiger, C.A., et al., Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorganic chemistry, 2010. 50(3): p. 1089-1097.
18. Wolfenstine, J., et al., High conductivity of dense tetragonal Li7La3Zr2O12. Journal of Power Sources, 2012. 208: p. 193-196.
19. Larraz, G., A. Orera, and M. Sanjuan, Cubic phases of garnet-type Li 7 La 3 Zr 2 O 12: the role of hydration. Journal of Materials Chemistry A, 2013. 1(37): p. 11419-11428.
20. Matsui, M., et al., Phase transformation of the garnet structured lithium ion conductor: Li7La3Zr2O12. Solid State Ionics, 2014. 262: p. 155-159.
21. Kim, K.-w., et al., Cubic phase behavior and lithium ion conductivity of Li7La3Zr2O12 prepared by co-precipitation synthesis for all-solid batteries. Journal of Industrial and Engineering Chemistry, 2016. 36: p. 279-283.
22. Zhang, X. and J. Fergus, Phase Content and Conductivity of Aluminum-and Tantalum-Doped Garnet-Type Lithium Lanthanum Zirconate Solid Electrolyte Materials. ECS Transactions, 2017. 77(11): p. 509-516.
23. Yu, S., et al., Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials, 2015. 28(1): p. 197-206.
24. Ohta, S., T. Kobayashi, and T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7− X La3 (Zr2− X, NbX) O12 (X= 0–2). Journal of Power Sources, 2011. 196(6): p. 3342-3345.
25. Kotobuki, M., et al., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. Journal of Power Sources, 2011. 196(18): p. 7750-7754.
26. Kotobuki, M., et al., Electrochemical properties of Li7La3Zr2O12 solid electrolyte prepared in argon atmosphere. Journal of Power Sources, 2012. 199: p. 346-349.
27. Huang, M., et al., Effect of sintering temperature on structure and ionic conductivity of Li7− xLa3Zr2O12− 0.5 x (x= 0.5~ 0.7) ceramics. Solid State Ionics, 2011. 204: p. 41-45.
28. Zhu, Y., X. He, and Y. Mo, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. Journal of Materials Chemistry A, 2016. 4(9): p. 3253-3266.
29. Murugan, R., V. Thangadurai, and W. Weppner, Schnelle lithiumionenleitung in granatartigem Li7La3Zr2O12. Angewandte Chemie, 2007. 119(41): p. 7925-7928.
30. Cheng, L., et al., Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS applied materials & interfaces, 2015. 7(32): p. 17649-17655.
31. Miara, L., et al., About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS applied materials & interfaces, 2016. 8(40): p. 26842-26850.
32. Li, Y., Y. Cao, and X. Guo, Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6. 75La3Zr1. 75Ta0. 25O12 solid electrolytes. Solid State Ionics, 2013. 253: p. 76-80.
33. Li, Y., et al., Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power Sources, 2014. 248: p. 642-646.
34. Shao, C., et al., Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method. Solid State Ionics, 2016. 287: p. 13-16.
35. Kotobuki, M., et al., Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. Journal of the Electrochemical Society, 2010. 157(10): p. A1076-A1079.
36. Düvel, A., et al., Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. The Journal of Physical Chemistry C, 2012. 116(29): p. 15192-15202.
37. Allen, J.L., et al., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources, 2012. 206: p. 315-319.
38. Cheng, L., et al., Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li 7 La 3 Zr 2 O 12. Journal of Materials Chemistry A, 2014. 2(1): p. 172-181.
39. Deviannapoorani, C., et al., Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. Journal of Power Sources, 2013. 240: p. 18-25.
40. Hubaud, A.A., et al., Low temperature stabilization of cubic (Li 7− x Al x/3) La 3 Zr 2 O 12: role of aluminum during formation. Journal of Materials Chemistry A, 2013. 1(31): p. 8813-8818.
41. El Shinawi, H. and J. Janek, Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. Journal of Power Sources, 2013. 225: p. 13-19.
42. Thompson, T., et al., Tetragonal vs. cubic phase stability in Al–free Ta doped Li 7 La 3 Zr 2 O 12 (LLZO). Journal of Materials Chemistry A, 2014. 2(33): p. 13431-13436.
43. Liu, B., et al., Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries. Nano letters, 2017. 17(8): p. 4917-4923.
44. Chen, R.-J., et al., Effect of calcining and Al doping on structure and conductivity of Li7La3Zr2O12. Solid State Ionics, 2014. 265: p. 7-12.
45. Dhivya, L. and R. Murugan, Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet. ACS applied materials & interfaces, 2014. 6(20): p. 17606-17615.
46. Janani, N., et al., Influence of sintering additives on densification and Li+ conductivity of Al doped Li 7 La 3 Zr 2 O 12 lithium garnet. RSC Advances, 2014. 4(93): p. 51228-51238.
47. Ishiguro, K., et al., Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. Journal of The Electrochemical Society, 2014. 161(5): p. A668-A674.
48. Miara, L.J., et al., First-principles studies on cation dopants and electrolyte| cathode interphases for lithium garnets. Chemistry of Materials, 2015. 27(11): p. 4040-4047.
49. Jalem, R., et al., Insights into the lithium-ion conduction mechanism of garnet-type cubic Li5La3Ta2O12 by ab-initio calculations. The Journal of Physical Chemistry C, 2015. 119(36): p. 20783-20791.
50. Shao, C., et al., Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochimica Acta, 2017. 225: p. 345-349.
51. Sudo, R., et al., Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics, 2014. 262: p. 151-154.
52. Shin, D.O., et al., Synergistic multi-doping effects on the Li 7 La 3 Zr 2 O 12 solid electrolyte for fast lithium ion conduction. Scientific reports, 2015. 5: p. 18053.
53. Ahmad, M.M., Estimation of the concentration and mobility of mobile Li+ in the cubic garnet-type Li 7 La 3 Zr 2 O 12. RSC Advances, 2015. 5(33): p. 25824-25829.
54. Rosenkiewitz, N., et al., Nitrogen-free sol–gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO). Journal of Power Sources, 2015. 278: p. 104-108.
55. Rawlence, M., et al., On the chemical stability of post-lithiated garnet Al-stabilized Li 7 La 3 Zr 2 O 12 solid state electrolyte thin films. Nanoscale, 2016. 8(31): p. 14746-14753.
56. Botros, M., et al., Field assisted sintering of fine-grained Li7− 3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. Journal of Power Sources, 2016. 309: p. 108-115.
57. Lobe, S., et al., Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. Journal of power sources, 2016. 307: p. 684-689.
58. Dermenci, K.B., E. Çekiç, and S. Turan, Al stabilized Li7La3Zr2O12 solid electrolytes for all-solid state Li-ion batteries. International Journal of Hydrogen Energy, 2016. 41(23): p. 9860-9867.
59. Rangasamy, E., J. Wolfenstine, and J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics, 2012. 206: p. 28-32.
60. Bernuy-Lopez, C., et al., Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chemistry of Materials, 2014. 26(12): p. 3610-3617.
61. Wagner, R., et al., Crystal structure of garnet-related Li-ion conductor Li7–3 x Ga x La3Zr2O12: fast Li-ion conduction caused by a different cubic modification? Chemistry of Materials, 2016. 28(6): p. 1861-1871.
62. Rettenwander, D., et al., Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12 solid electrolytes. Chemistry of Materials, 2016. 28(7): p. 2384-2392.
63. Li, C., et al., Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors. Journal of Alloys and Compounds, 2017. 695: p. 3744-3752.
64. Yang, S.H., et al., Ionic conductivity of Ga-doped LLZO prepared using Couette–Taylor reactor for all-solid lithium batteries. Journal of Industrial and Engineering Chemistry, 2017. 56: p. 422-427.
65. Wu, J.-F., et al., Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS applied materials & interfaces, 2017. 9(2): p. 1542-1552.
66. Jiang, Y., et al., Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ionics, 2017. 300: p. 73-77.
67. Du, F., et al., All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. Journal of Power Sources, 2015. 300: p. 24-28.
68. Wu, J.-F., et al., Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS applied materials & interfaces, 2017. 9(14): p. 12461-12468.
69. Tenhaeff, W.E., et al., Resolving the Grain Boundary and Lattice Impedance of Hot‐Pressed Li7La3Zr2O12 Garnet Electrolytes. ChemElectroChem, 2014. 1(2): p. 375-378.
70. Cheng, L., et al., Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS applied materials & interfaces, 2015. 7(3): p. 2073-2081.
71. Ren, Y., et al., Effects of Li source on microstructure and ionic conductivity of Al-contained Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 ceramics. Journal of the European Ceramic Society, 2015. 35(2): p. 561-572.
72. Tang, Y., et al., Effects of Li2O-Al2O3-SiO2 system glass on the microstructure and ionic conductivity of Li7La3Zr2O12 solid electrolyte. Materials Letters, 2017. 193: p. 251-254.
73. Xu, B., et al., Li3PO4-added garnet-type Li6. 5La3Zr1. 5Ta0. 5O12 for Li-dendrite suppression. Journal of Power Sources, 2017. 354: p. 68-73.
74. Tan, J. and A. Tiwari, Synthesis of cubic phase Li7La3Zr2O12 electrolyte for solid-state lithium-ion batteries. Electrochemical and Solid-State Letters, 2011. 15(3): p. A37-A39.
75. Ahn, C.-W., et al., Electrochemical properties of Li7La3Zr2O12-based solid state battery. Journal of Power Sources, 2014. 272: p. 554-558.
76. Liu, T., et al., Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6. 75La3Zr1. 75Ta0. 25O12 electrolyte: Interfacial resistance. Journal of Power Sources, 2016. 324: p. 349-357.
77. Van Den Broek, J., S. Afyon, and J.L. Rupp, Interface‐Engineered All‐Solid‐State Li‐Ion Batteries Based on Garnet‐Type Fast Li+ Conductors. Advanced Energy Materials, 2016. 6(19).
78. Yonemoto, F., et al., Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. Journal of Power Sources, 2017. 343: p. 207-215.
79. Kazyak, E., et al., Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12. Chemistry of Materials, 2017. 29(8): p. 3785-3792.
80. Park, K., et al., Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12. Chemistry of Materials, 2016. 28(21): p. 8051-8059.
81. Zhu, Y., X. He, and Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS applied materials & interfaces, 2015. 7(42): p. 23685-23693.
82. Richards, W.D., et al., Interface stability in solid-state batteries. Chemistry of Materials, 2015. 28(1): p. 266-273.
83. Tsai, C.-L., et al., Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS applied materials & interfaces, 2016. 8(16): p. 10617-10626.
84. Kim, H.W., et al., Hybrid solid electrolyte with the combination of Li 7 La 3 Zr 2 O 12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. Journal of Materials Chemistry A, 2016. 4(43): p. 17025-17032.
85. Han, X., et al., Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature materials, 2017. 16(5): p. 572.
86. Li, Y., et al., Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium‐Ion Batteries. Angewandte Chemie International Edition, 2017. 56(3): p. 753-756.
87. Zhou, W., et al., Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. Journal of the American Chemical Society, 2016. 138(30): p. 9385-9388.
88. Chan, C.K., T. Yang, and J.M. Weller, Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries. Electrochimica Acta, 2017.
89. Croce, F., et al., Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998. 394(6692): p. 456.
90. Oxide, B.P., Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells Stergiopoulos, Thomas; Arabatzis, Ioannis M.; Katsaros, Georgios; Falaras, Polycarpos. Nano Letters, 2002. 2(11): p. 1259-1261.
91. Yuan, C., et al., Enhanced electrochemical performance of poly (ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework. Journal of Power Sources, 2013. 240: p. 653-658.
92. Huo, H., et al., Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. Journal of Power Sources, 2017. 372: p. 1-7.
93. Keller, M., et al., Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P (EO) 15LiTFSI. Journal of Power Sources, 2017. 353: p. 287-297.
94. Jiang, Z., B. Carroll, and K. Abraham, Studies of some poly (vinylidene fluoride) electrolytes. Electrochimica Acta, 1997. 42(17): p. 2667-2677.
95. Choi, S.W., et al., An electrospun poly (vinylidene fluoride) nanofibrous membrane and its battery applications. Advanced Materials, 2003. 15(23): p. 2027-2032.
96. Jeddi, K., M. Ghaznavi, and P. Chen, A novel polymer electrolyte to improve the cycle life of high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2013. 1(8): p. 2769-2772.
97. Raghavan, P., et al., Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. Journal of Power Sources, 2011. 196(16): p. 6742-6749.
98. Wang, H., H. Huang, and S.L. Wunder, Novel microporous poly (vinylidene fluoride) blend electrolytes for lithium‐ion batteries. Journal of the Electrochemical Society, 2000. 147(8): p. 2853-2861.
99. Jeong, H.-S., et al., Effect of phase inversion on microporous structure development of Al2O3/poly (vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. Journal of Power Sources, 2010. 195(18): p. 6116-6121.
100. Yoshima, K., Y. Harada, and N. Takami, Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries. Journal of Power Sources, 2016. 302: p. 283-290.
101. Kato, T., et al., Preparation of thick-film electrode-solid electrolyte composites on Li7La3Zr2O12 and their electrochemical properties. Journal of Power Sources, 2016. 303: p. 65-72.
102. Choi, J.-H., et al., Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. Journal of Power Sources, 2015. 274: p. 458-463.
103. Chen, R.-J., et al., Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach. ACS applied materials & interfaces, 2017. 9(11): p. 9654-9661.
104. Cheng, S.H.-S., et al., Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochimica Acta, 2017. 253: p. 430-438.
105. Chen, L., et al., PEO/Garnet Composite Electrolytes for Solid-State Lithium Batteries: from “Ceramic-in-Polymer” to “Polymer-in-Ceramic”. Nano Energy, 2017.
106. Zheng, J., M. Tang, and Y.Y. Hu, Lithium Ion Pathway within Li7La3Zr2O12‐Polyethylene Oxide Composite Electrolytes. Angewandte Chemie, 2016. 128(40): p. 12726-12730.
107. Rosso, M., et al., Onset of dendritic growth in lithium/polymer cells. Journal of power sources, 2001. 97: p. 804-806.
108. Ban, X., et al., A High-Performance and Durable Poly (ethylene oxide)-Based Composite Solid Electrolyte for All Solid-State Lithium Battery. The Journal of Physical Chemistry C, 2018. 122(18): p. 9852-9858.
電子全文 電子全文(網際網路公開日期:20230823)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔