(44.192.112.123) 您好!臺灣時間:2021/03/01 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林琨錡
研究生(外文):Kun-Qi Lin
論文名稱:鎳/矽晶奈米錐陣列蕭基近紅外光偵測器之製備與特性研究
指導教授:鄭紹良
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:89
中文關鍵詞:偵測器奈米錐近紅外光光吸收漸變結構
相關次數:
  • 被引用被引用:0
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有良好光吸收性的材料對於光偵測元件的應用非常重要。在本研究中,我們成功在矽晶基材上利用奈米球微影技術結合金屬催化蝕刻法以一步驟蝕刻來製備大面積、尺寸可調之規則矽晶奈米錐陣列,並探討其在波長400-1600 nm之光吸收特性,相較純矽晶基材及矽晶奈米柱可明顯提升光吸收效果。接著藉由矽晶奈米錐陣列能有效提升光吸收之特性,蒸鍍鎳金屬薄膜於矽晶奈米錐陣列上形成蕭基接面以製作光偵測器,並對於背鍍鋁電極之鎳/矽晶奈米錐陣列進行光譜量測分析,發現奈米錐側壁之尖針狀的鎳金屬薄膜,可大幅增加試片對近紅外光的吸收率,在波長400-1600 nm皆達90 %以上,說明對於紅外光的應用具有相當大的潛力。鎳/矽晶奈米錐蕭基接面在暗態下表現出明顯的整流特性,並可於無外加偏壓下,以波長940 nm近紅外光源照射實現自驅動光偵測特性,同時得到良好的光響應電流,並具有響應快速、高穩定性等優勢。
In this study, we propose a facile approach, which is based on the oxygen plasma modified nanosphere lithography in conjunction with a one-step Au-assisted chemical etching process to fabricate periodic arrays of vertically-aligned, size-controllable Si nanocones on p-type (001)Si substrates. UV-Vis-IR spectroscopic measurements showed that the produced high-aspect-ratio, vertical Si nanocone array exhibited good broadband absorption characteristics in the wavelength range of 400-1600 nm, which have promising applications in near-infrared (near-IR) photodetection. To fabricate a Si nanocone-based near-IR photodetector, a Ni thin film was deposited on the surface of the p-type vertical Si nanocone array. The produced core-shell (Si nanocone array/Ni) Schottky junction near-IR photodetector is self-powered, and can generate a photocurrent under 940 nm illumination at zero bias voltage with a considerable on/off ratio (~103). Furth device analyses also show that the produced self-powered photodetector exhibits high responsivity, good stability, and fast response and recovery time. The obtained results clearly demonstrate that the new approach proposed here provides the capability to fabricate various high-performance, self-powered Si-based IR photodetectors.
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 光偵測元件 2
1-3 矽基蕭基接面光偵測器 3
1-3-1 金屬與半導體接觸理論 3
1-3-2 矽基蕭基接面光偵測器 5
1-4 矽基粗糙化奈米結構 6
1-4-1 矽單晶粗糙化奈米結構 6
1-4-2 奈米球微影術結合金屬催化蝕刻法製備矽單晶奈米錐 7
1-5 研究動機及目標 9
第二章 實驗步驟及儀器設備 10
2-1 實驗步驟 10
2-1-1 矽晶基材使用前處理 10
2-1-2 奈米球陣列模板製備 10
2-1-3 金屬催化蝕刻製備矽單晶奈米柱陣列 11
2-1-4 金屬催化蝕刻製備矽單晶奈米錐陣列 11
2-1-5 鎳/矽晶奈米柱、鎳/矽晶奈米錐蕭基光偵測器製備 11
2-2 儀器設備 12
2-2-1 掃描式電子顯微鏡 12
2-2-2 穿透式電子顯微鏡 13
2-2-3 可見光-近紅外光光譜儀 13
2-2-4 近紅外光偵測系統 14
第三章 結果與討論 15
3-1 大面積規則有序之矽單晶奈米結構陣列 15
3-1-1 大面積單層聚苯乙烯奈米球模板製備 15
3-1-2 規則有序之準直矽單晶奈米柱陣列製備 16
3-1-3 規則有序之準直矽單晶奈米錐陣列製備 16
3-1-4 矽單晶奈米柱與奈米錐陣列之光譜量測與分析 18
3-2 蕭基接面結構之製備與光譜分析 20
3-2-1 鎳/矽晶奈米錐蕭基接面製備 20
3-2-2 鎳/矽晶奈米錐陣列之光譜量測與分析 21
3-3 鎳/矽晶奈米錐蕭基光偵測器近紅外光感測特性量測與探討 23
3-3-1 光偵測器製備與特性 23
3-3-2 不同奈米結構之蕭基接面與光偵測器特性比較 25
3-3-3 光偵測器響應度與響應時間 26
第四章 結論與未來展望 28
參考文獻 29
表目錄 35
圖目錄 37
[1] D. M. Newman, M. L. Wears, M. Jollie, and D. Choo, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording ”, Nanotechnology 18 (2007) 205301.
[2] T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators ”, Opt. Express 15 (2007) 4198-4204.
[3] K.Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and photovoltaic property of ordered macroporous silicon ”, Appl. Phys. Lett. 95 (2009) 143119.
[4] Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells ”, PNAS 107 (2010) 17491-17496.
[5] C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture ”, Appl. Phys. Lett. 91 (2007) 061116.
[6] Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography ”, Nano Lett. 10 (2010) 4651-4656.
[7] J. A. Ratches, R. H. Vollmerhausen, and R. G. Driggers, “Target acquisition performance modeling of infrared imaging systems: past, present, and future ”, IEEE Sens. J. 1 (2001) 31-40.
[8] I. Zafar, U. Zakir, I. Romanenko, R. M. Jiang, and E. Edirisinghe, “Human silhouette Extraction on FPGAs for infrared night vision military surveillance ”, PACCS (2010).
[9] R. Vadivambal and D. S. Jayas, “Applications of thermal imaging in agriculture and food industry - A Review ”, Food Bioprocess Tech. 4 (2011) 186-199.
[10] H. Song, G. Zhou, M. Di, and P. Ren, “An infrared non-contact framework for monitoring the liquid levels in natural gas pipelines ”, Int. J. Oil Gas Coal T. 15 (2017) 317-327.
[11] K. D. Shepherd and M. G. Walsh, “Infrared spectroscopy-enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries ”, J. Near Infrared Spec. 15 (2007) 1-191.
[12] E. F. J. Ring and K. Ammer, “Infrared thermal imaging in medicine ”, Physiol. Meas. 33 (2012) R33-R46.
[13] R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bu¨low, and M. Kjær, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease ”, Scand. J. Med. Sci. Spor. 11 (2001) 213-222.
[14] B.B. Lahiri, S. Bagavathiappan, T. Jayakumar, and J. Philip, “Medical applications of infrared thermography: A review ” Infrared Phys. Techn. 55 (2012) 221-235.
[15] http://www.doorauto.tw/感應器-二合一感應器-雷達開門紅外線安全防夾/
[16] http://www.stately.com.tw/Product-206.asp
[17] A. Rogalski, “Recent progress in infrared detector technologies ”, Infrared Phys. Techn. 54 (2011) 136-154.
[18] A. Rogalski, “History of infrared detectors ”, Opto-Electron. Rev. 20 (2012) 279-308.
[19] https://www.stockfeel.com.tw/感測元件-目前發展/
[20] G.P. Weckler, “Operation of p-n Junction Photodetectors in a Photon Flux Integrating Mode “, IEEE J. Solid-St. Circ. 2 (1967) 65-73.
[21] E. Monroyyz, E. Munozy, F. J. Sanchezy, F. Calley, E. Callejay, B. Beaumontx, P. Gibartx, J. A. Munozk, and F. Cussok, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications ”, Semicond. Sci. Tech. 13 (1998) 1042-1046.
[22] A. P. Godse and U. A. Bakshi Electronic Devices. 2009. 2-3.
[23] H. J. Syua, S. C. Shiua, and C. F. Lin, “Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%”, Sol. Energ. Mat. Sol. C. 98 (2012) 267-272.
[24] C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo, M. Feng, Y. Q. Yu, C. Y. Wu, Y. H. Wu, and S. H. Yu, “Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetector ”, ACS Nano 8 (2014) 4015-4022.
[25] D. Wua, Z. Loua, Y. Wanga, Z. Yaob, T. Xua, Z. Shia, J. Xua,Y. Tiana, X. Lia, and Y. H. Tsangc, ” Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction ”, Sol. Energ. Mat. Sol. C. 182 (2018) 272-280.
[26] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim, and H. H. Cho, “Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion ”, Int. J. Heat Mass Tran. 82 (2015) 267-272.
[27] W. Schottky, “Halbleitertheorie der Sperrschicht ”, Naturwissenschaften 26 (1938) 843.
[28] N. F. MOTT, “Note on the contact between a metal and an insulator or semi-conductor ”, Math. Proc. Cambridge 34 (1938) 568-572.
[29] B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications., 1984. 2-8.
[30] J. Bardeen, “Surface states and rectification at a metal semi-conductor contact ”, Phys. Rev. 71 (1947) 717-727.
[31] A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor systems ”, J. Appl. Phys. 36 (1965) 3212-3220.
[32] .V. Heine, “Theory of Surface States ”, Phys. Rev. 138 (1965) 1689-1696.
[33] J. L. Freeouf and J. M. Woodall, “Schottky barriers: An effective work function model ”, Appl. Phys. Lett. 39 (1981) 177-179.
[34] R. T. Tung, “Chemical bonding and fermi level pinning at metal-semiconductor interfaces ”, Phys. Rev. Lett. 84 (2000) 6078-6081.
[35] F. Zhang, S. Niu, W. Guo, G. Zhu,Y. Liu, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire ”, ACS Nano 7 (2013) 4537-4544.
[36] https://en.wikipedia.org/wiki/Photodiode
[37] B. Kang, Yi Cai, and L. Wang, “Improvement of external quantum efficiency of silicide Schottky-barrier detectors in the 3 to 5 μm waveband with subwavelength-grating incident plane ”, Opt. Eng. 55 (2016) 047103.
[38] B. Y. Tsaur, C. K. Chen, and J. P. Mattia, “PtSi Schottky-barrier focal plane arrays for multispectral imaging in ultraviolet, visible, and infrared spectral bands ”, IEEE Electr. Dev. L. 11 (1990) 162-164.
[39] S. Roy, K. Midya, S. P. Duttagupta, and D. Ramakrishnan, “Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation ”, J. Appl. Phys. 116 (2014) 124507.
[40] S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications ”, Appl. Phys. Lett. 92 (2008) 081103.
[41] Y. T. Wu, C. W. Huang, C. H. Chiu, C. F. Chang, J. Y. Chen, T. Y. Lin, Y. T. Huang, K. C. Lu, P. H. Yeh, and W. W. Wu, “Nickel/platinum dual silicide axial nanowire heterostructures with excellent photosensor applications”, Nano Lett. 16 (2016) 1086-1091.
[42] P. Lv, X. Zhang, X. Zhang, W. Deng, and J. Jie, “High-sensitivity and fast-response graphene/crystalline silicon schottky junction-based near-IR photodetectors ”, IEEE Electr. Device L. 34 (2013) 1337-1339.
[43] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L.Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications ”, Nat. Mater. 9 (2010) 239-244.
[44] L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications ”, Nano Lett. 7 (2007) 3249-3252.
[45] H. Jeong, H. Song, Y. Pak, K. Kwon, K. Jo, H. Lee, and G. Y. Jung, “Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells ”, Adv. Mater. 26 (2014) 3445-3450.
[46] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Yi Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays ”, Nano Lett. 9 (2009) 279-282.
[47] F. L. Gonzalez, D. E. Morse, and M. J. Gordon, “Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications ”, Opt. Lett. 39 (2014) 13-16.
[48] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells ”, Appl. Phys. Lett. 91 (2007) 233117.
[49] K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells ”, Appl. Phys. Lett. 92 (2008) 163103.
[50] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee , “Electron field emission from silicon nanowires ”, Appl. Phys. Lett. 75 (1999) 1700-1702.
[51] U. Raya, D. Banerjeeb, B. Dasc, N.S. Dasd, S.K. Sinhaa, and K.K. Chattopadhyayc, “Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires ”, Mater. Res. Bull. 97 (2018) 232-237.
[52] G. Larrieu, Y. Guerfi, X.L. Han, and N. Clément, “Sub-15 nm gate-all-around field effect transistors on vertical silicon nanowires ”, Solid-State Electron. 130 (2017) 9-14.
[53] J. Y. Kim, J. H.Ahn, D.I. Moon, T. J. Park, S. Y. Lee, and Y. K. Choi, “Multiplex electrical detection of avian influenza andhuman immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor ”, Biosens. Bioelectron. 55 (2014) 162-167.
[54] G. J. Zhanga, M. J. Huanga, J. J. Anga, E. T. Liub, and K. V. Desai, “Self-assembled monolayer-assisted silicon nanowire biosensor for detection of protein–DNA interactions in nuclear extracts from breast cancer cell ”, Biosens. Bioelectron. 26 (2011) 3233-3239.
[55] J. F. Hsu, B. R. Huang, C. S. Huang, and H. L. Chen, “Silicon nanowires as pH sensor ”, Jpn. J. Appl. Phys. 44 (2005) 2626-2629.
[56] K. Q. Peng, X. Wang, and S. T. Lee, “Gas sensing properties of single crystalline porous silicon nanowires ”, Appl. Phys. Lett. 95 (2009) 243112.
[57] M. Hetzel, A. Lugstein, C. Zeiner, T. Wojcik, P. Pongratz, and E. Bertagnolli, “Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst ”, Nanotechnology 22 (2011) 395601.
[58] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu , Z.H. Xi b, and S.Q. Feng, “Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism ”, Chem. Phys. Lett. 323 (2000) 224-228.
[59] Y. Yao, F. Li, and S. T. Lee, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts ”, Chem. Phys. Lett. 406 (2005) 381-385.
[60] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner, and A. Waag, “Production of vertical nanowire resonators by cryogenic‑ICP–DRIE ”, Microsyst. Technol. 20 (2014) 759-767.
[61] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, and C. Y. Hsu, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching ”, Curr. Appl. Phys. 13 (2013) 717-724.
[62] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gosele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching ”, Nano Lett. 8 (2008) 3046-3051.
[63] Z. P. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, Length, and Density ”, Adv. Mater. 19 (2007) 744-748.
[64] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Leea, “Ordered silicon nanowire arrays via nanosphere lithography and metalinduced etching ”, Appl. Phys. Lett. 90 (2007) 163123.
[65] H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of fresnel reflection ”, Langmuir 26 (2010) 12855.
[66] L. Li, Y. Fang, C. Xu, Y. Zhao, K. Wu, C. Limburg, P. Jiang, and K. J. Ziegler, “Controlling the geometries of Si nanowires through tunable nanosphere lithography ”, ACS Appl. Mater. Inter. 9 (2017) 7368-7375.
[67] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching ”, Appl. Phys. Lett. 93 (2008) 133109.
[68] M. K. Dawood1, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires ”, Nanotechnology 21 (2010) 205305.
[69] Y. J. Hung, S. L. Lee, K. C. Wu, Y. Tai, and Y. T. Pan, “Antireflective silicon surface with verticalaligned silicon nanowires realized by simple wet chemical etching processes ”, Opt. Express 19 (2011) 15792-15802.
[70] H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, and C. Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping ”, J. Mater. Chem. A 1 (2013) 9942-9946.
[71] F. Teng, N. Li, D. Xu, D. Y. Xiao, X. G. Yang, and N. Lu, “Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching ”, Nanoscale 9 (2017) 449-453.
[72] B. P. Azeredo, J. Sadhu, J. Ma, K. Jacobs, J .Kim, K. Lee, J. H. Eraker, X. Li, S .Sinha, N. Fang, P. Ferreira1, and K. Hsu, “Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching ”, Nanotechnology 24 (2013) 225305.
[73] Y. Xu, Y. Xuan, and X. Liu, “Design of nano/micro–structured surfaces for efficiently harvesting and managing full–spectrum solar energy ”, Sol. Energy 158 (2017) 504-510.
[74] E.H. Rhoderick, “Metal-semiconductor contacts ”, Solid-State Elect. De. 129 (1982).
[75] R. Kumar and S. Chand, “Fabrication and electrical characterization of nickel/p-Si Schottky diode at low temperature ”, Solid State Sci. 58 (2016) 115-121.
[76] Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee, “Single-crystalline ZnTe nanowires for application as high-performance Green/Ultraviolet photodetector ”, Opt. Express 19 (2011) 6101-6108.
[77] C.Y. Wu, Z.Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, L.Wang, and L. B. Luo, “Core–shell silicon nanowire array-Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector ”, J. Mater. Chem. C 4 (2016) 10804-10811.
[78] C. Liu, H. Zhang, Z. Sun, K. Ding, J. Mao, Z. Shao, and J. Jie, “Topological insulator Bi2Se3 nanowire/Si heterostructure photodetectors with ultrahigh responsivity and broadband response ”, J. Mater. Chem. C 4 (2016) 5648-5055.
[79] J. Yao, Z. Zheng, J. Shao, and G. Yang, “Promoting Photosensitivity and Detectivity of the Bi/Si Heterojunction Photodetector by Inserting a WS2 Layer ”, ACS Appl. Mater. Inter. 7 (2015) 26701-26708.
[80] Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang, and Z. Zhao, “Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions ”, Small 10 (2014) 2345-2351.
[81] P. L. Ong, W. B. Euler, and I. A. Levitsky, “Carbon nanotube-Si diode as a detector of mid-infrared illumination ”, Appl. Phys. Lett. 96 (2010) 033106.
[82] X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection ”, Nano Lett. 13 (2013) 909-916.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔