|
References 1. Brock, T. D.; Brock, K. M.; Belly, R. T.; Weiss, R. L., Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie 1972, 84 (1), 54-68. 2. Gao, Y. G.; Su, S. Y.; Robinson, H.; Padmanabhan, S.; Lim, L.; McCrary, B. S.; Edmondson, S. P.; Shriver, J. W.; Wang, A. H. J., The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nature Structural Biology 1998, 5 (9), 782-786. 3. Agback, P.; Baumann, H.; Knapp, S.; Ladenstein, R.; Hard, T., Architecture of nonspecific protein-DNA interactions in the Sso7d-DNA complex. Nature Structural Biology 1998, 5 (7), 579-584. 4. Forterre, P.; Confalonieri, F.; Knapp, S., Identification of the gene encoding archeal-specific DNA-binding proteins of the Sac10b family. Molecular Microbiology 1999, 32 (3), 669-670. 5. (a) Chen, L.; Chen, L.-R.; Zhou, X. E.; Wang, Y.; Kahsai, M. A.; Clark, A. T.; Edmondson, S. P.; Liu, Z.-J.; Rose, J. P.; Wang, B.-C.; Meehan, E. J.; Shriver, J. W., The Hyperthermophile Protein Sso10a is a Dimer of Winged Helix DNA-binding Domains Linked by an Antiparallel Coiled Coil Rod. Journal of Molecular Biology 2004, 341 (1), 73-91; (b) Kahsai, M. A.; Vogler, B.; Clark, A. T.; Edmondson, S. P.; Shriver, J. W., Solution structure, stability, and flexibility of Sso10a: A hyperthermophile coiled-coil DNA-binding protein. Biochemistry 2005, 44 (8), 2822-2832. 6. (a) Bell, S. D.; Botting, C. H.; Wardleworth, B. N.; Jackson, S. P.; White, M. F., The Interaction of Alba, a Conserved Archaeal Chromatin Protein, with Sir2 and Its Regulation by Acetylation. Science 2002, 296 (5565), 148-151; (b) Wardleworth, B. N.; Russell, R. J. M.; Bell, S. D.; Taylor, G. L.; White, M. F., Structure of Alba: an archaeal chromatin protein modulated by acetylation. The EMBO Journal 2002, 21 (17), 4654-4662. 7. Chou, C. C.; Lin, T. W.; Chen, C. Y.; Wang, A. H. J., Crystal structure of the hyperthermophilic archaeal DNA-binding protein Sso10b2 at a resolution of 1.85 angstroms. J. Bacteriol. 2003, 185 (14), 4066-4073. 8. (a) Vaughn, J. L.; Feher, V.; Naylor, S.; Strauch, M. A.; Cavanagh, J., Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator AbrB. Nature Structural Biology 2000, 7, 1139; (b) Zorzini, V.; Buts, L.; Schrank, E.; Sterckx, Y. G. J.; Respondek, M.; Engelberg-Kulka, H.; Loris, R.; Zangger, K.; van Nuland, N. A. J., Escherichia coli antitoxin MazE as transcription factor: insights into MazE-DNA binding. Nucleic Acids Research 2015, 43 (2), 1241-1256. 9. Wu, H.-M.; Crothers, D. M., The locus of sequence-directed and protein-induced DNA bending. Nature 1984, 308, 509. 10. Dame, R. T.; van Mameren, J.; Luijsterburg, M. S.; Mysiak, M. E.; Janićijević, A.; Pazdzior, G.; van der Vliet, P. C.; Wyman, C.; Wuite, G. J. L., Analysis of scanning force microscopy images of protein-induced DNA bending using simulations. Nucleic Acids Research 2005, 33 (7), e68-e68. 11. Cam, K.; Béjar, S.; Gil, D.; Bouché, J.-P., Identification and sequence of gene dicB: translation of the division inhibitor from an in-phase internal start. Nucleic Acids Research 1988, 16 (14), 6327-6338. 12. Beck von Bodman, S.; Hayman, G. T.; Farrand, S. K., Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proceedings of the National Academy of Sciences 1992, 89 (2), 643-647. 13. Hsu, C.-H.; Wang, A. H. J., The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT-AbrB superfamily from archaea. Nucleic Acids Research 2011, 39 (15), 6764-6774. 14. Lin, B.-L.; Chen, C.-Y.; Huang, C.-H.; Ko, T.-P.; Chiang, C.-H.; Lin, K.-F.; Chang, Y.-C.; Lin, P.-Y.; Tsai, H.-H. G.; Wang, A. H. J., The Arginine Pairs and C-Termini of the Sso7c4 from Sulfolobus solfataricus Participate in Binding and Bending DNA. PLOS ONE 2017, 12 (1), e0169627. 15. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics 1983, 79 (2), 926-935. 16. Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J., The Amber biomolecular simulation programs. Journal of computational chemistry 2005, 26 (16), 1668-1688. 17. Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C., ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of chemical theory and computation 2015, 11 (8), 3696-3713. 18. Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics. Journal of molecular graphics 1996, 14 (1), 33-38. 19. Kumar, R.; Grubmuller, H., do_x3dna: a tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations. Bioinformatics 2015, 31 (15), 2583-2585. 20. Abdel-Azeim, S.; Chermak, E.; Vangone, A.; Oliva, R.; Cavallo, L., MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories. BMC Bioinformatics 2014, 15 (5), S1. 21. McAfee, J. G.; Edmondson, S. P.; Zegar, I.; Shriver, J. W., Equilibrium DNA Binding of Sac7d Protein from the Hyperthermophile Sulfolobus acidocaldarius: Fluorescence and Circular Dichroism Studies. Biochemistry 1996, 35 (13), 4034-4045.
|