(3.236.175.108) 您好!臺灣時間:2021/02/28 02:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林建樺
研究生(外文):Chien-Hua Lin
論文名稱:混摻氮於有序中孔洞碳材的合成、鑑定及應用 暨 複合式高分子電解質之製備及特性分析
指導教授:高憲明
學位類別:博士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:195
中文關鍵詞:中孔洞碳材奈米金屬顆粒奈米氧化金屬鋰離子電池固態電解質
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主要分為兩個部分。第一部分是採用奈米模鑄法 (nanocasting)合成具有氮混摻之有序中孔洞碳材 (ordered mesoporous carbons with N-doped, N-OMCs)。首先以非離子型界面活性劑 (nonionic surfactants) P123作為有機模板 (organic template),和四乙基矽氧烷 (tetraethoxysilane, TEOS)在酸性水溶液中均勻混合,加入低分子量的醇類做為微胞修飾劑 (modifier),利用多成份共自組裝現象 (multi-component cooperative assembly)合成具立方體Ia3d排列中孔洞氧化矽 (mesoporous silica) KIT-6。之後以KIT-6的奈米級孔洞做為硬膜板(hard-template),填入含有氮混摻之碳源前驅物(Resorcinol and Melamine),以900 °C碳化反應 (carbonization) 將前驅物碳化形成碳材,最後移除氧化矽硬模板後,成功合成出N-OMCs。
在材料的應用方面,利用合成之N-OMCs做染料吸附之實驗,藉此探討對不同染料分子吸附能力的影響。依據Langmuir及Freundlich等溫吸附模型的分析,經由實驗結果發現,本研究合成出之N-OMCs較符合Langmuir等溫吸附模式所假設的單層吸附模式,較其他等溫吸附模式更適合描述有序中孔洞碳材吸附染料的狀況。
另一方面,本研究也將N-OMCs做進一步的應用,利用N-OMCs做為載體吸附Sn金屬離子後,再加以高溫鍛燒,成功合成出具二氧化錫之奈米顆粒(Nanoparticles)的金屬氧化物之有序中孔洞碳材;其奈米顆粒的尺寸的大小約為4~5 nm,並將此材料應用做鋰離子電池之陽極材料。
第二部分則為開發新型複合式固態高分子電解質(solid polymer electrolytes, SPEs)。實驗採用三嵌段結構的高分子Jeffamine ED2003、ED900及ED600,分別與做為主鏈段的另一高分子聚丙烯腈 (polyacrylonitrile, PAN)反應,形成梳狀結構之複合式固態高分子電解質。此類型固態電解質的導電度表現以ED900的系列較佳,在30 °C時的最佳離子導電度可達到6.28 × 10-5 S/cm,電化學穩定性可承受在3.0~3.5 V的氧化裂解電壓。
The focus of this thesis is divided into two parts. The first part is the use of nanocasting synthesis ordered mesoporous carbons with nitrogen-doped (N-OMCs). First, nonionic surfactants (P123) were used as organic templates, and tetraethoxysilane (TEOS) were homogeneously mixed in acidic aqueous solution. Low molecular weight alcohols were added as microcells modifier. KIT-6 with cube Ia3d arrangement was synthesized by multi-component cooperative assembly. Then, the KIT-6 nanoscale porous were used as the hard-template, and filled with a nitrogen-containing carbon precursor (Resorcinol and Melamine). The precursor was treated with 900 °C carbonization to form carbon material, and finally remove the hard template of silicon oxide.
The N-OMCs was successfully synthesized, characterized and employed as adsorbents for dye removal. The equilibrium adsorption capacities were estimated to quantitatively assess the adsorption capacities of the adsorbents using Methylen Blue (MB) and Victoria Blue B (VB-B) etc. as the model dyes respectively. The plots obtained from the Langmuir and Freundlich isotherm models for adsorption of MB and VB-B etc. by the present adsorbents, and the correlation coefficients (R2) deduced from the experimental data by these two isotherm models. According to the value of R2, the Langmuir isotherm model gives a much better fit to the adsorption data than the Freundlich isotherm model. The fitting results suggest that the dye adsorption behavior for MB and VB-B etc., on the N-OMCs surface involves a monolayer adsorption process.
On the other hand, this study will also used N-OMCs for further application. The metal oxide of SnO2 nanoparticles were successfully supported on N-OMCs (denoted SnO2@N-OMCs) via wet impregnation, and the diameter size were around 4~5 nm. Sn2+ metal ions were adsorbed by N-OMCs as carriers and then calcined by high temperature (300 °C) calcination to form the SnO2 metal oxide. These materials will be used as a anode of the Lithium ion battery.
The second part is the development of new composite solid polymer electrolyte. The composite solid polymer electrolytes (SPEs) with comb structure (denoted PEDx, x=6, 9, 20) were successfully synthesized, and characterized. The polymers of the three-block structure Jeffamine ED2003, ED900 and ED600 were used to react with CN triple bond of polyacrylonitrile (PAN) as the main segment to form the composite SPEs with comb structure. The conductivity of the SPEs were the series of ED900 with an optimum ionic conductivity of 6.28 x 10-5 S/cm at 30 °C and electrochemical stability at 3.5~4.0 V for oxidative cracking Voltage. The high ionic conductivity of SPEs will be used in lithium ion batteries charge and discharge test.
目 錄
頁次
中文摘要………………………………………………………………………………………………………………………i
英文摘要……………………………………………………………………………………………………………………ii
目錄………………………………………………………………………………………………………………………………v
圖目錄…………………………………………………………………………………………………………………………xi
表目錄………………………………………………………………………………………………………………………xvi
一、緒論………………………………………………………………………………………………………………………1
1-1孔洞材料合成發展與文獻回顧………………………………………………………………………1
1-1-1中孔洞材料的定義………………………………………………………………………………………2
1-1-2中孔洞材料的簡介………………………………………………………………………………………3
1-1-3界面活性劑性質簡介……………………………………………………………………………………4
1-2中孔洞碳材的歷史演進與文獻回顧……………………………………………………………12
1-2-1中孔洞碳材合成發展…………………………………………………………………………………12
1-2-2奈米模鑄法合成規則有序中孔洞碳材發展簡介………………………………15
1-2-3界面活性劑模造法合成規則有序中孔洞碳材發展簡介…………………17
1-3中孔洞材料之吸附發展及應用介紹……………………………………………………………20
1-3-1中孔洞材料吸附染料之發展應用…………………………………………………………20
1-3-2中孔洞材料吸附金屬之發展應用…………………………………………………………23
1-4複合式高分子電解質材料之 合成 發展 及文獻回顧…………………………27
1-4-1 鋰離子電池簡介………………………………………………………………………………………27
1-4-2 高分子電解質……………………………………………………………………………………………29
1-4-3膠態高分子電解質……………………………………………………………………………………30
1-4-4固態高分子電解質……………………………………………………………………………………32
1-4-5無機複合高分子電解質……………………………………………………………………………42
1-4-6固態高分子電解質傳導機制……………………………………………………………………42
1-5鋰離子電池負極材料之合成發展及文獻回顧…………………………………………46
1-5-1碳材類負極材料之簡介及文獻回顧………………………………………………………47
1-5-2非碳材類負極材料之簡介及文獻回顧…………………………………………………51
1-5-3以金屬氧化物載覆於碳材的負極材料…………………………………………………52
二、研究內容與方法………………………………………………………………………………………………57
2-1研究想法及動機………………………………………………………………………………………………57
2-2實驗藥品……………………………………………………………………………………………………………59
2-3實驗步驟……………………………………………………………………………………………………………61
2-3-1合成有序中孔洞矽材KIT-6……………………………………………………………………61
2-3-2以奈米模鑄法合成有序中孔洞碳材CMK-8…………………………………………61
2-3-3以奈米模鑄法合成含氮有序中孔洞碳材CMK-8Nx……………………………62
2-3-4染料吸附實驗………………………………………………………………………………………………63
2-3-5利用CMK-8Nx吸附鎳金屬製備奈米鎳金屬顆粒………………………………63
2-3-6利用CMK-8Nx吸附錫離子製備二氧化錫奈米顆粒……………………………64
2-3-6高分子電解質製備………………………………………………………………………………………64
2-4實驗儀器設備……………………………………………………………………………………………………67
2-4-1實驗合成設備………………………………………………………………………………………………67
2-4-2實驗鑑定儀器………………………………………………………………………………………………67
2-5儀器分析原理……………………………………………………………………………………………………69
2-5-1 X-射線粉末繞射(Powder X-ray diffraction, XRD)……69
2-5-2氮氣等溫吸脫附…………………………………………………………………………………………70
2-5-3熱重分析………………………………………………………………………………………………………71
2-5-4紫外光-可見光光譜…………………………………………………………………………………72
2-5-5傅立葉紅外線吸收光譜……………………………………………………………………………73
2-5-6固態核磁共振………………………………………………………………………………………………74
2-5-7掃描式電子顯微鏡……………………………………………………………………………………77
2-5-8穿透式電子顯微鏡……………………………………………………………………………………77
2-5-9微差掃描熱卡計…………………………………………………………………………………………78
2-5-10交流阻抗分析……………………………………………………………………………………………79
2-5-11線性掃描伏安法………………………………………………………………………………………80
2-5-12 X-光光電子能譜……………………………………………………………………………………80
三、實驗結果與討論………………………………………………………………………………………………81
3-1混摻氮之有序中孔洞碳材CMK-8的鑑定討論…………………………………………81
3-1-1 XRD結果分析……………………………………………………………………………………………81
3-1-2氮氣等溫吸附/脫附結果分析…………………………………………………………………84
3-1-3熱重分析 (TGA)………………………………………………………………………………………87
3-1-4 SEM結果分析……………………………………………………………………………………………89
3-1-5 TEM結果分析……………………………………………………………………………………………90
3-1-6元素分析(EA)及X-ray光電子能譜(XPS)………………………………………91
3-2混摻氮之有序中孔洞碳材吸附染料之實驗討論……………………………………94
3-2-1亞甲基藍 (Methylene blue)吸附實驗………………………………………94
3-2-1-1 校正檢量線製作結果…………………………………………………………………………94
3-2-1-2不同起始濃度下吸附結果…………………………………………………………………94
3-2-1-3等溫吸附模型(Adsorption isotherm model)分析………95
3-2-2維多利亞藍(Victoria Blue B)吸附實驗……………………………………99
3-2-2-1 校正檢量線製作結果…………………………………………………………………………99
3-2-2-2不同起始濃度下吸附結果…………………………………………………………………99
3-2-2-3等溫吸附模型(Adsorption isotherm model)分析………100
3-2-3孔雀石綠(Malachite Green)吸附實驗吸附實驗……………………103
3-2-3-1 校正檢量線製作結果………………………………………………………………………103
3-2-3-2不同起始濃度下吸附結果…………………………………………………………………103
3-2-3-3等溫吸附模型(Adsorption isotherm model)分析………104
3-2-4剛果紅(Congo Red)吸附實驗吸附實驗…………………………………………107
3-2-4-1 校正檢量線製作結果………………………………………………………………………107
3-2-4-2不同起始濃度下吸附結果…………………………………………………………………107
3-2-4-3等溫吸附模型(Adsorption isotherm model)分析………108
3-3混摻氮之有序中孔洞碳材吸附奈米金屬顆粒之實驗討論…………………111
3-3-1 XRD結果分析……………………………………………………………………………………………111
3-3-2氮氣等溫吸附/脫附結果分析………………………………………………………………115
3-4梳狀支鏈型複合式高分子電解質PED-x-y……………………………………………117
3-4-1微差掃描熱卡計量測………………………………………………………………………………117
3-4-2紅外線吸收光譜之鑑定分析…………………………………………………………………122
3-4-3固態核磁共振骨架鑑定……………………………………………………………………………132
3-4-4交流阻抗儀之離子導電度測試………………………………………………………………134
3-4-5熱重量分析…………………………………………………………………………………………………140
3-4-6線性掃描伏安法(Linear scan voltammetry)………………………142
3-5中孔洞碳材及二氧化錫複合式負極材料之實驗討論……………………………145
3-5-1 XRD結果分析……………………………………………………………………………………………145
3-5-2 SEM及TEM結果分析………………………………………………………………………………147
3-5-3 XPS結果分析……………………………………………………………………………………………149
3-5-4充放電循環電性測試結果探討………………………………………………………………151
四、結論……………………………………………………………………………………………………………………153
4-1混摻氮之有序中孔洞碳材……………………………………………………………………………153
4-2梳狀支鏈型複合式高分子電解質………………………………………………………………154
五、參考文獻…………………………………………………………………………………………………………155
五、參考文獻
[1]國立中央大學圖書館電子資源查詢系統:科學引用文獻索引資料庫 (SCIE, Science Citation Index Expanded), Web of Science。
[2]Davis, M. E. Ordered Porous Materials for Emerging Applications. Nature 2002, 417, 813.
[3]Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials. Nature 1994, 368, 317.
[4]Tian, Z. R.; Tong, W.; Wang, J. Y.; Duan, N. G.; Krishnan, V. V.; Suib, S. L. Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts. Science 1997, 276, 926.
[5]Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R.; Wang, J. H. Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases. Science 1997, 278, 838.
[6]Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation. Angew. Chem., Int. Ed. 2005, 44, 7053.
[7]Zhao, X. S.; Lu, G. Q. M.; Millar, G. J. Advances in Mesoporous Molecular Sieve MCM-41. Ind. Eng. Chem. Res. 1996, 35, 2075.
[8]Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chem., Int. Ed. 1999, 38, 56.
[9]Davis, S. A.; Breulmann, M.; Rhodes, K. H.; Zhang, B.; Mann, S. Template-Directed Assembly Using Nanoparticle Building Blocks:  A Nanotectonic Approach to Organized Materials. Chem. Mater. 2001, 13, 3218.
[10]Tsai, C. T.; Pan, Y. C.; Ting, C. C.; Vetrivel, C.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H. M. A Simple One-Pot Route to Mesoporous Silicas SBA-15 Functionalized with Exceptionally High Loadings of Pendant Carboxylic Acid Groups. Chem. Commun. 2009, 5018.
[11]丁君強,「規則排列之穩定中孔洞矽化物及碳材的合成與鑑定」,國立中央大學,博士論文,民國99年。
[12]Stein, A.; Melde, B. J.; Schroden, R. C. Hybrid Inorganic–Organic Mesoporous Silicates-Nanoscopic Reactors Coming of Age. Adv. Mater. 2000, 12, 1403.
[13]Davis, M. E. Ordered Porous Materials for Emerging Applications. Nature 2002, 417, 813.
[14]Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373.
[15]IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 57.
[16]Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered Mesoporous Molecular Sieves Synthesized by A Liquid-crystal template mechanism. Nature 1992, 359, 710.
[17]Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114, 10834.
[18]Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. The Preparation of Alkyltriinethylaininonium-Kaneinite Complexes and Their Conversion to Microporous Materials. Bull. Chem. Soc. Jpn. 1990, 63, 988.
[19]Schuth, F.; Schmidt, W. Microporous and Mesoporous Materials. Adv. Mater. 2002, 14, 629.
[20]Schuth, F. Non-siliceous Mesostructured and Mesoporous Materials. Chem. Mater. 2001, 13, 3184.
[21]Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, B. F. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science 1995, 267, 1138.
[22]Wang, Y.; Zhao, D. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chem. Rev. 2007, 107, 2821.
[23]Israelachvili, J. N.; Mitchell, D. J.; Niham, B. W. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. J. Chem. Soc. Faraday Trans. 1976, 72, 1525.
[24]Kleitz, F.; Kim, T. W.; Ryoo, R. Phase Domain of the Cubic Im3̄m Mesoporous Silica in the EO106PO70EO106−Butanol−H2O System. Langmuir 2006, 22, 440.
[25]Kim, T. W.; Kleitz, F.; Paul, B.; Ryoo, R. MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:  Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. J. Am. Chem. Soc. 2005, 127, 7601.
[26]Boissiere, C.; Larbot, A.; Bourgaux, C.; Prouzet, E.; Bunton, C. A. A study of the assembly mechanism of the mesoporous MSU-X silica two-step synthesis. Chem. Mater. 2001, 13, 3580.
[27]Brinker, C. J., Scherer, G. W., Sol-Gel Science : The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, 1990.
[28]Voegtlin, A. C.; Ruch, F.; Guth, J. L.; Patarin, J.; Huve, L. F- mediated synthesis of mesoporous silica with ionic-and non-ionic surfactants. A new templating pathway. Microporous Mater. 1997, 9, 95.
[29]Kim, J. M.; Han, Y. J.; Chmelka, B. F.; Stucky, G. D. One-step synthesis of ordered mesocomposites with non-ionic amphiphilic block copolymers: implications of isoelectric point, hydrolysis rate and fluoride. Chem. Commun. 2000, 2437.
[30]Ryoo, R.; Joo, S. H.; Jun, S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. J. Phys. Chem. B 1999, 103, 7743.
[31]Ryoo, R.; Joo, S. H.; Jun, S.; Tsubakiyama, T.; Terasaki, O. Ordered mesoporous carbon molecular sieves by templated synthesis: the structural varieties. Stud. Surf. Sci. Catal. 2001, 135, 150.
[32]Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 42, 169.
[33]Lee, H. I.; Pak, C.; Shin, C. H.; Chang, H.; Seung, D.; Yie, J. E.; Kim, J. M. Rational design of ordered mesoporous carbon with controlled bimodal porosity via dual silica templating route. Chem. Commun. 2005, 6035.
[34]Kleitz, F.; Choi, S. H.; Ryoo, R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 2136.
[35]Tian, B.; Che, S.; Liu, Z.; Liu, X.; Fan, W.; Tatsumi, T.; Terasaki, O.; Zhao, D. Novel approaches to synthesize self-supported ultrathin carbon nanowire arrays templated by MCM-41. Chem. Commun. 2003, 2726.
[36]Che, S.; Garcia-Bennett, A. E.; Liu, X.; Hodgkins, R. P.; Wright, P. A.; Zhao, D.; Terasaki, O.; Tatsumi, T. Synthesis of Large‐Pore Iad Mesoporous Silica and Its Tubelike Carbon Replica. Angew. Chem. Int. Ed. 2003, 42, 3930.
[37]Bansal, C. R., Donnet, J. B., Stoeckli, F., Active Carbon, Marcel Dekker, New York, 1988.
[38]Foley, H. C. Carbogenic molecular sieves: synthesis, properties and applications. Microporous Mater. 1995, 4, 407.
[39]Lamond, T. G.; Marsh, H. The surface properties of carbon—III the process of activation of carbons. Carbon 1964, 1, 293.
[40]Hu, Z. H.; Srinivasan, M. P.; Ni, Y. M. Preparation of mesoporous high‐surface‐area activated carbon. Adv. Mater. 2000, 12, 62.
[41]Marsh, H.; Rand, B. The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities. Carbon 1971, 9, 63.
[42]Tamai, H.; Kakii, T.; Hirota, Y.; Kumamoto, T.; Yasuda, H. Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules. Chem. Mater. 1996, 8, 454.
[43]Oya, A.; Yoshida, S.; Alcanizmonge, J.; Linaressolano, A. Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 1995, 33, 1085.
[44]Ozaki, J.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T. Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997, 35, 1031.
[45]Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T. Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37, 2049.
[46]Pekala, R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989, 24, 3221.
[47]Knox, J. H.; Unger, K. K.; Mueller, H. Prospects for carbon as packing material in high-performance liquid chromatography. J. Liq. Chromatogr. 1983, 6, 1.
[48]Knox, J. H.; Kaur, B.; Millward, G. R. J. Structure and performance of porous graphitic carbon in liquid chromatography. J. Chromatogr. A 1986, 352, 3.
[49]Guo, W.; Su, F.; Zhao, X. S. Ordered mesostructured carbon templated by SBA-16 silica. Carbon 2005, 43, 2423.
[50]Liang, C. D.; Hong, K. L.; Guiochon, G. A.; Mays, J. W.; Dai, S. Synthesis of a large‐scale highly ordered porous carbon film by self‐assembly of block copolymers. Angew. Chem. Int. Ed. 2004, 43, 5785.
[51]Liang, C. D.; Dai, S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J. Am. Chem. Soc. 2006, 128, 5316.
[52]Göltner, C. G.; Weienberger, M. C. Mesoporous organic polymers obtained by “twostep nanocasting”. Acta Polymer. 1998, 49, 704.
[53]Kyotani, T. Control of pore structure in carbon. Carbon 2000, 38, 269.
[54]C. G. Wu, T. Bein, Conducting carbon wires in ordered, nanometer-sized channels. Science 1994, 266, 1013.
[55]Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712.
[56]Lu, A. H.; Schüth, F. Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv. Mater. 2006, 18, 1793-1805.
[57]Moriguchi, I.; Ozono, A.; Mikuriya, K.; Teraoka, Y.; Kagawa, S.; Kodama, M. Micelle-Templated Mesophases of Phenol-Formaldehyde Polymer. Chem. Lett. 1999, 28, 1171.
[58]Lee, J.; Kim, J.; Yoon, S.; Oh, S. -M.; Hyeon, Y. Simple synthesis of uniform mesoporous carbons with diverse structures from mesostructured polymer/silica nanocomposites. Chem. Mater. 2004, 16, 3323.
[59]Liang, C.; Li, Z.; Dai, S. Mesoporous carbon materials: synthesis and modification. Angew. Chem. Int. Ed. 2008, 47, 3696.
[60]Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Cheng, L.; Feng, D.; Wu, Z. X.; Chen, Z. X.; Wan, Y.; Stein, A.; Zhao, D. Y. A family of highly ordered mesoporous polymer resin and carbon structures from organic− organic self-assembly. Chem. Mater. 2006, 18, 4447.
[61]Ingaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc. 1999, 121, 9611.
[62]Asefa, T.; Maclachan, M. J.; Coombs, N.; Ozin, G. A. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 1999, 402, 867.
[63]Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem. Mater. 1999, 11, 3302.
[64]Pang, J.; John, V. T.; Loy, D. A.; Yang, Z.; Lu, Y. Hierarchical Mesoporous Carbon/Silica Nanocomposites from Phenyl‐Bridged Organosilane. Adv. Mater. 2005, 17, 704.
[65]Liang, C. D.; Hong, K. L.; Guiochon, G. A.; Mays, J. W.; Dai, S. Synthesis of a large‐scale highly ordered porous carbon film by self‐assembly of block copolymers. Angew. Chem. Int. Ed. 2004, 43, 5785.
[66]Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem. Commun. 2005, 0, 2125.
[67]Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 2005, 44, 7053.
[68]Zhang, F.; Meng, Y.; Gu, D.; Yan, U.; Yu, C.; Tu, B.; Zhao, D. A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Ia3̄d Bicontinuous Cubic Structure. J. Am. Chem. Soc. 2005, 127, 13508.
[69]Zhang, F.; Meng, Y.; Gu, D.; Yan, Y.; Chen, Z.; Tu, B.; Zhao, D. An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem. Mater. 2006, 18, 5279.
[70]Huang, Y.; Cai, H.; Yu, T.; Zhang, F.; Zhang, F.; Memg, Y.; Gu, D.; Wang, Y.; Sun, X.; Tu, B.; Zhao, D. Formation of Mesoporous Carbon With a Face‐Centered‐Cubic Fd3m Structure and Bimodal Architectural Pores From the Reverse Amphiphilic Triblock Copolymer PPO‐PEO‐PPO. Angew. Chem. Int. Ed. 2007, 46, 1089.
[71]Ho, K. Y.; McKay G.; Yeung, K. L. Selective adsorbents from ordered mesoporous silica. Langmuir 2003, 19, 3019.
[72]Rahman, I. A.; Saad, B.; Shaidan, S.; Rizal, E. S. S. Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical–thermal process. Bioresour. Technol. 2005, 96, 1578.
[73]Jin, X.-Y.; Jiang, M.-Q.; Shan, X.-Q.; Pei, Z.-G.; Chen, Z.-L. Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. J. Colloid Interface Sci. 2008, 328, 243.
[74]Zhuang, X.; Wan, Y.; Feng, C.; Shen, Y.; Zhao, D. Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem. Mater. 2009, 21, 706.
[75]Santhi, T.; Manonmani, S.; Smitha, T. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. J. Hazard. Mater. 2010, 179, 178.
[76]Bradder, P.; Ling, S. K.; Wang, S.; Liu, S. Dye adsorption on layered graphite oxide. J. Chem. Eng. Data 2011, 56, 138.
[77]Chang, W. C.; Deka, J. R.; Wu, H. Y.; Shieh, F. K.; Huang, S. Y.; Kao, H. M. Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Appl. Catal., B 2013, 142, 817.
[78]Deka, J. R.; Lin, Y. H.; Kao, H. M. Ordered cubic mesoporous silica KIT-5 functionalized with carboxylic acid groups for dye removal. RSC. Adv. 2014, 4, 49061.
[79]Deka, J. R.; Liu, C. L.; Wang, T. H.; Chang, W. C.; Kao, H. M. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents. J. Hazar. Mater. 2014, 278, 539.
[80]Lin, C. H.; Deka, J. R.; Wu, C. E.; Tsai, C. H.; Saikia, D.; Yang, Y. C.; Kao, H. M. Bifunctional Cage‐Type Cubic Mesoporous Silica SBA‐1 Nanoparticles for Selective Adsorption of Dyes. Chem. - Asian J. 2017, 12, 1314
[81]Yang, C.-M.; Sheu, H. S.; Chao, K. J. Templated Synthesis and Structural Study of Densely Packed Metal Nanostructures in MCM‐41 and MCM‐48. Adv. Funct. Mater. 2002, 12, 143.
[82]Raja, R.; Hermans, S.; Shephard, D. S.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Bromley, S.; Thomas, J. M. Preparation and characterisation of a highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst. Chem. Commun. 1999, 1571.
[83]Han, Y. J.; Kim, J. M.; Stucky, G. D. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem. Mater. 2000, 12, 2068.
[84]Yang, C. M.; Liu, P. H.; Ho, Y. F.; Chiu, C. Y.; Chao, K. J. Highly dispersed metal nanoparticles in functionalized SBA-15. Chem. Mater. 2003, 15, 275.
[85]Cheng, M. Y.; Pana, C. J.; Hwang, B. J. Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15: Blockage-free nanochannels. J. Mater. Chem. 2009, 19, 5193.
[86]Shon, J. K.; Park, J. N.; Hwang, S. H.; Jin, M.; Moon, K. Y.; Boo, J. H.; Han, T. H.; Kim, J. M. Pretreatment effect on CO oxidation over highly ordered mesoporous silver catalyst. Bull. Korean Chem. Soc. 2010, 31, 415.
[87]Takai, A.; Doi, Y.; Yamauchi, Y.; Kuroda, K. A Rational Repeating Template Method for Synthesis of 2 D Hexagonally Ordered Mesoporous Precious Metals. Chem. - Asian J. 2011, 6, 881.
[88]Shah, A. T.; Li, B.; Abdalla, Z. E. A. Direct synthesis of Cu–SBA-16 by internal pH-modification method and its performance for adsorption of dibenzothiophene. Microporous Mesoporous Mater. 2010, 130, 248.
[89]Chen, C. S.; Chen, C. C.; Chen, C. T.; Kao, H. M. Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups. Chem. Commun. 2011, 47, 2288.
[90]Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 2012, 100, 1518.
[91]Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334, 928.
[92]Yang, P.; Tarascon, J. M. Towards systems materials engineering. Nat. Mater. 2012, 11, 560.
[93]Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303.
[94]Armand, M. Polymers with ionic conductivity. Adv. Mater. 1990, 2, 278.
[95]Scrosati, B.; Croce, F.; Panero, S. Progress in lithium polymer battery R&D. J. Power Sources 2001, 100, 93.
[96]Orsini, F.; Du Pasquier, A.; Beaudoin, B.; Tarascon, J. M.; Trentin, M.; Langenhuizen, N.; De Beer, E.; Notten, P. In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. J. Power Sources 1998, 76, 19.
[97]Wang, C.; Li, D.; Too, C. O.; Wallace, G. G. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 2009, 21, 2604.
[98]Hu, L.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010, 4, 5843.
[99]Abraham, K. M.; Alamgir, M. Room temperature polymer electrolytes and batteries based on them. Solid State Ionics 1994, 70, 20.
[100]Tarascon, J. M.; Gozdz, A. S.; Schmutz, C.; Shokoohi, F.; Warren, P. C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics 1996, 86-88, 49.
[101]Song, J. Y.; Wang, Y. Y.; Wan, C. C. Conductivity study of porous plasticized polymer electrolytes based on poly (vinylidene fluoride) a comparison with polypropylene separators. J. Electrochem. Soc. 2000, 147, 3219.
[102]Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589.
[103]Wright, P. V. Electrical conductivity in ionic complexes of poly (ethylene oxide). Br. Polym. J. 1975, 7, 319.
[104]Armand, M. B.; Chabagno, J. M. Poly-ethers as solid electrolytes. Second International Meeting on Solid Electrolytes, St Andrews, Scotland, 20-22 Sept., 1978.
[105]Papke, B. L.; Ratner, M. A.; Shriver, D. F. Conformation and Ion‐Transport Models for the Structure and Ionic Conductivity in Complexes of Polyethers with Alkali Metal Salts. J. Electrochem. Soc. 1982, 129, 1694.
[106]Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 1983, 11, 91.
[107]Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324.
[108]Abraham, K. M.; Jiang, Z.; Carroll, B. Highly conductive PEO-like polymer electrolytes. Chem. Mater. 1997, 9, 1978.
[109]Zhang, J.; Huang, X.; Wei, H.; Fu, J.; Liu, W.; Tang, X. Preparation and electrochemical behaviors of composite solid polymer electrolytes based on polyethylene oxide with active inorganic–organic hybrid polyphosphazene nanotubes as fillers. New J. Chem. 2011, 35, 614.
[110]Song, J. Y.; Wang, Y. Y.; Wan, C. C. Conductivity study of porous plasticized polymer electrolytes based on poly (vinylidene fluoride) a comparison with polypropylene separators. J. Electrochem. Soc. 2000, 147, 3219.
[111]Wang, H. L.; Kao, H. M.; Digar, M.; Wen, T. C. FTIR and Solid State 13C NMR Studies on the Interaction of Lithium Cations with Polyether Poly(urethane urea). Macromolecules 2001, 34, 529.
[112]Lu, Q.; Fang, J.; Yang, J.; Yan, G.; Liu, S.; Wang, J. A novel solid composite polymer electrolyte based on poly (ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. J. Membr. Sci. 2013, 425-426, 105.
[113]Çelik, S. Ü.; Bozkurt, A. Polymer electrolytes based on the doped comb-branched copolymers for Li-ion batteries. Solid State Ionics 2010, 181, 987.
[114]Sun, X.-G.; Kerr, J. B. Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis (allylmalonato) borate. Macromolecules 2006, 39, 362.
[115]Aydın, H.; Şenel, M.; Erdemi, H.; Baykal, A.; Tülü, M.; Ata, A.; Bozkurt, A. Inorganic–organic polymer electrolytes based on poly (vinyl alcohol) and borane/poly (ethylene glycol) monomethyl ether for Li-ion batteries. J. Power Sources 2011, 196, 1425.
[116]Zhang, Z.; Sherlock, D.; West, R.; West, R. Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo (oxyethylene) side chains: synthesis and conductivity. Macromolecules 2003, 36, 9176.
[117]Kaskhedikar, N.; Burjanadze, M.; Karatas, Y.; Wiemhöfer, H. D. Polymer electrolytes based on cross-linked cyclotriphosphazenes. Solid State Ionics 2006, 177, 3129.
[118]Weston, J. E.; Steele, B. C. H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7, 75.
[119]Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. Physical and chemical properties of nanocomposite polymer electrolytes. J. Phys. Chem. B 1999, 103, 10632.
[120]Prasanth, R.; Shubha, N.; Hng, H. H.; Srinivasan, M. Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur. Polym. J. 2013, 49, 307.
[121]Wu, G. M.; Lin, S. J.; Yang, C. C. Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J. Membr. Sci. 2006, 275, 127.
[122]Kurian, M.; Galvin, M. E.; Trapa, P. E.; Sadoway, D. R.; Mayes, A. M. Single-ion conducting polymer–silicate nanocomposite electrolytes for lithium battery applications. Electrochim. Acta 2005, 50, 2125.
[123]Welna, D. T.; Stone, D. A.; Allcock, H. R. Lithium-Ion Conductive Polymers as Prospective Membranes for Lithium− Seawater Batteries. Chem. Mater. 2006, 18, 4486.
[124]Dias, F. B.; Plomp, L.; Veldhuis, J. B. J. Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 2000, 88, 169.
[125]Song, J. Y.; Wang, Y. Y.; Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 1999, 77, 183.
[126]Kelly, I. E.; Owen, J. R.; Steele, B. C. H. Poly (ethylene oxide) electrolytes for operation at near room temperature. J. Power Sources 1985, 14, 13.
[127]Chintapalli, S.; Frech, R. Effect of plasticizers on high molecular weight PEO-LiCF3SO3 complexes. Solid State Ionics 1996, 86-88, 341.
[128]Borghini, M. C.; Mastragostino, M.; Zanelli, A. Reliability of lithium batteries with crosslinked polymer electrolytes. Electrochim. Acta 1996, 41, 2369.
[129]Cha, E. H.; Macfarlane, D. R.; Forsyth, M.; Lee, C. W. Ionic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer. Electrochim. Acta 2004, 50, 335.
[130]Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I. Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application. J. Appl. Polym. Sc. 1982, 27, 4191.
[131]Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4. J. Polym. Sci., Part B: Polym. Phys. 1983, 21, 939.
[132]Choe, H. S.; Carroll, B. G.; Pasquariello, D. M.; Abraham, K. M. Characterization of some polyacrylonitrile-based electrolytes. Chem. Mater. 1997, 9, 369.
[133]Liang, Y.-H.; Wang, C.-C.; Chen, C.-Y. Conductivity and characterization of plasticized polymer electrolyte based on (polyacrylonitrile-b-polyethylene glycol) copolymer. J. Power Sources 2007, 172, 886.
[134]Perera, K. S.; ke, M. A. K. L. D. s.; Skaarup, S.; West, K. Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries. J. Solid State Electrochem. 2008, 12, 873.
[135]Zhou, D. Y.; Wang, G. Z.; Li, W. S.; Li, G. L.; Tan, C. L.; Rao, M. M.; Liao, Y. H. Preparation and performances of porous polyacrylonitrile–methyl methacrylate membrane for lithium-ion batteries. J. Power Sources 2008, 184, 477.
[136]Takeoka, S.; Maeda, Y.; Tsuchida, E.; Ohno, H. Synthesis, polymerization and cation conductive properties of (ω‐carboxy)‐oligo (oxyethylene) methacrylate. Polym. Adv. Technol. 1990, 1, 201.
[137]Appetecchi, G. B.; F. Croce; Scrosati, B. Kinetics and stability of the lithium electrode in poly (methylmethacrylate)-based gel electrolytes. Electrochim. Acta 1995, 40, 991.
[138]Stephan, A. M.; Renganathan, N. G.; Kumar, T. P.; Thirunakaran, R.; Pitchumani, S.; Shrisudersan, J.; Muniyandi, N. Ionic conductivity studies on plasticized PVC/PMMA blend polymer electrolyte containing LiBF4 and LiCF3SO3. Solid State Ionics 2000, 130, 123.
[139]Liu, Y.; Lee, J. Y.; Hong, L. Synthesis, characterization and electrochemical properties of poly (methyl methacrylate)-grafted-poly (vinylidene fluoride-hexafluoropropylene) gel electrolytes. Solid State Ionics 2002, 150, 317.
[140]Alamgir, M.; Abraham, K. M. Li ion conductive electrolytes based on poly (vinyl chloride). J. Electrochem. Soc. 1993, 140, 96.
[141]Stephan, A. M.; Nahm, K. S. Review on composite polymer electrolytes for lithium batteries. Polymer 2006, 47, 5952.
[142]Tsuchida, E.; Ohno, H.; Tsunemi, K. Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I. Electrochim. Acta 1983, 28, 591.
[143]Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte. U. S. Patent 1994, US5,296,318.
[144]Boudin, F.; Andrieu, X.; Jehoulet, C.; Olsen, I. I. Microporous PVdF gel for lithium-ion batteries. J. Power Sources 1999, 81-82, 804.
[145]Weston, J. E.; Steele, B. C. H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7, 75.
[146]Almond, D. P.; West, A. R. Entropy effects in ionic conductivity. Solid State Ionics 1986, 18-19, 1105.
[147]Wieczorek, W.; Such, K.; Wyciślik, H.; Płocharski, J. Modifications of crystalline structure of PEO polymer electrolytes with ceramic additives. Solid State Ionics 1989, 36, 255.
[148]Kao, H. M.; Chen, C. L. An Organic–Inorganic Hybrid Electrolyte Derived from Self‐Assembly of a Poly (Ethylene Oxide)–Poly (Propylene Oxide)–Poly (Ethylene Oxide) Triblock Copolymer. Angew. Chem. Int. Ed. 2004, 43, 980.
[149]Kao, H. M.; Hung, T. T.; Fey, G. T. K. Multinuclear Solid-State NMR Characterization, Ion Dissociation, and Dynamic Properties of Lithium-Doped Organic− Inorganic Hybrid Electrolytes Based on Ureasils. Macromolecules 2007, 40, 8673.
[150]Liao, C. C.; Wu, H. Y.; Saikia, D.; Pan, Y. C.; Chen, Y. K.; Fey, G. T. K.; Kao, H. M. A Highly Conductive Star-Branched Organic−Inorganic Hybrid Electrolyte with Remarkable Swelling Properties Based on PPG−PEG−PPG Diamine, Cyanuric Chloride, and Alkoxysilane. Macromolecules 2008, 41, 8956.
[151]Pan, Y. C.; Saikia, D.; Fang, J.; Tsai, L. D.; Fey, G. T. K.; Kao, H. M. Synthesis and characterization of a new hyperbranched organic–inorganic solid polymer electrolyte with cyanuric chloride as a core element. Electrochim. Acta 2011, 56, 8519.
[152]Saikia, D.; Chen, Y. H.; Pan, Y. C.; Fang, J.; Tsai, L. D.; Fey, G. T. K.; Kao, H. M. A new highly conductive organic-inorganic solid polymer electrolyte based on a di-ureasil matrix doped with lithium perchlorate. J. Mater. Chem. 2011, 21, 10542.
[153]Wright, P. V. Polymer electrolytes-the early days. Electrochim. Acta 1998, 43, 1137.
[154]Armand, M. B. Polymer solid electrolytes-an overview. Solid State Ionics 1983, 9, 745.
[155]Shriver, D. F.; Farrington, G. C. Special Report: Solid Ionic Conductors. Chem. Eng. News 1985, 63, 42.
[156]Armand, M. B. Polymer electrolytes. Annu. Rev. Mater. Sci. 1986, 16, 245.
[157]Souquet, J. L.; Michel Duclot, M. L. Salt-polymer complexes: strong or weak electrolytes? Solid State Ionics 1996, 85, 149.
[158]Halim, M.; Hudaya, C.; Kim, A-Y.; Lee, J. K. Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries. J. Mater. Chem. A 2016, 4, 2651.
[159]Shi, H.; Barker, J.; Saidi, M. Y.; Koksbang, R. Structure and lithium intercalation properties of synthetic and Natural graphite. J. Electrochem. Soc. 1996, 143, 3466.
[160]陳金銘,「高容量碳粉材料」,工業材料,133,85-87,1998。
[161]Casas, C. D.; Li, W. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74.
[162]Zhang, H.-X.; Feng, C.; Zhai, Y.-C.; Jiang, K.-L.; Li, Q.-Q.; Fan, S.-S. Cross-Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2 Nanoparticles: A Novel Binder-Free and High-Capacity Anode Material for Lithium-Ion Batteries. Adv. Mater. 2009, 21, 2299.
[163]Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-S.; Kudo, T.; Honma, I. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Lett. 2008, 8, 2277.
[164]Xin, S.; Guo, Y.-G.; Wan, L.-J. Nanocarbon Networks for Advanced Rechargeable Lithium Batteries. Acc. Chem. Res. 2012, 45, 1759.
[165]Saikia, D.; Wang, T.-H.; Chou, C.-J.; Fang, J.; Tsai, L.-D.; Kao, H.-M. A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries. RSC Adv. 2015, 5, 42922.
[166]Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science 1997, 276, 1395.
[167]李日琪,「鋰離子電池陽極碳材料開發」,國立中央大學,碩士論文,民國89年。
[168]Li, Y.; Tan, B.; Wu, Y. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Lett. 2008, 8, 265.
[169]Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Adv. Mater. 2007, 19, 2336.
[170]Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 2010, 4, 3187.
[171]Zhang, H.; Tao, H.; Jiang, Y.; Jiao, Z.; Wu, M.; Zhao, B. Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 2950.
[172]楊模樺,「鋰離子二次電池負極新材料介紹-含錫氧化物」,工業材料,133,81-84,1998。
[173]Qiao, H.; Li, J.; Fu, J.; Kumar, D.; Wei, Q.; Cai, Y.; Huang, F. Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage properties. ACS Appl. Mater. Interfaces 2011, 3, 3704.
[174]Wang, X.; Li, Z.; Yin, L. Nanocomposites of SnO2@ordered mesoporous carbon (OMC) as anode materials for lithium-ion batteries with improved electrochemical performance. Cryst. Eng. Comm. 2013, 15, 7589.
[175]Wang, J.; Xin, H. L.; Wang, D. Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part. Part. Syst. Charact. 2014, 31, 515.
[176]Shin, K. Y.; Hong, J. Y.; Jang, J. Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study. J. Hazard. Mater. 2011, 190, 36.
[177]Bell, C. A.; Smith, S. V.; Whittaker, M. R.; Whittaker, A. K.; Gahan, L. R.; Monteiro, M. J. Surface‐Functionalized Polymer Nanoparticles for Selective Sequestering of Heavy Metals. Adv. Mater. 2006, 18, 582.
[178]Yang, B.; Yu, C.; Yu, Q.; Zhang, X.; Li, Z.; Lei, L. N-doped carbon xerogels as adsorbents for the removal of heavy metal ions from aqueous solution. RSC Adv. 2015, 5, 7182.
[179]Saikia, D.; Pan, Y. C.; Fang, J.; Tsai, L. D.; Fey, G. T. K.; Kao, H. M. A new organic–inorganic hybrid electrolyte based on polyacrylonitrile, polyether diamine and alkoxysilanes for lithium ion batteries: synthesis, structural properties, and electrochemical characterization. RSC Adv. 2014, 4, 13293.
[180]Vinu, A.; Anandan, S.; Anand, C.; Srinivasu, P.; Ariga, K.; Mori, T. Fabrication of partially graphitic three-dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method. Microporous Mesoporous Mater. 2008, 109, 398.
[181]Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonwicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; Higgins, S. B.; Schlenker, J. L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834.
[182]Kosslick, H.; Lischke, G.; Walther, G.; Storek, W.; Martin, A.; Fricke, R. Physico-chemical and catalytic properties of Al-, Ga-and Fe-substituted mesoporous materials related to MCM-41. Microporous Mater. 1997, 9, 13.
[183]Chi, Y.; Tu, J.; Wang, M.; Li, X.; Zhao, Z. One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 2014, 423, 54.
[184]Hao, G. P.; Li, W. C.; Wang, S.; Zhang, S.; Lu, A. H. Tubular structured ordered mesoporous carbon as an efficient sorbent for the removal of dyes from aqueous solutions. Carbon 2010, 48, 3330.
[185]Chen, L.; Wu, P.; Wang, H.; Ye, Y.; Xu, B.; Cao, G.; Zhou, Y.-M.; Lu, T.-H.; Yang, Y. Highly loaded SnO2/mesoporous carbon nanohybrid with well-improved lithium storage capability. J. Power Sources 2014, 247, 178.
[186]何嗣元,「具不同特性單體之混摻型有機無機固(膠)態高分子電解質結構鑑定與動力學研究」,國立中央大學,碩士論文,民國102年。
[187]Brunauer, S.; Deming, L.-S.; Deming, W.-E.; Teller, E. On a theory of thevan der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723.
[188]王奕凱、邱宏明、李秉傑合譯,非均勻系催化原理及應用,渤海堂文化公司,台北巿1988年。
[189]Barrett, E.-P.; Joyner, L.-G.; Halenda, P.-P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373.
[190]Gregg, S.-J.; Sing, K.-S.-W.; Salzberg, H. Adsorption surface area and porosity. J. Electrochem. Soc. 1967, 114, 279.
[191]Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533.
[192]Sun, L.; Wang, L.; Tian, C.; Tan, T.; Xie, Y.; Shi, K.; Li, M.; Fu, H. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv., 2012, 2, 4498.
[193]He, C.; Hu, X. Anionic Dye Adsorption on Chemically Modified Ordered Mesoporous Carbons. Ind. Eng. Chem. Res. 2011, 50, 14070.
[194]Yan, C.; Wang, C.; Yao, J.; Zhang, L.; Liu, X. Adsorption of methylene blue on mesoporous carbons prepared using acid- and alkaline-treated zeolite X as the template. Colloid Surf. A-Physicochem. Eng. Asp. 2009, 333, 115.
[195]Mohammadi, N.; Khani, H.; Gupta, V. K.; Amereh, E.; Agarwal, S. Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J.Colloid Interface Sci. 2011, 362, 457.
[196]Patterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978.
[197]Coleman, M. M.; Lee, K. H.; Skrovanek, D. J.; Painter, P. C. Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 1986, 19, 2149
[198]Flora, X. H.; Ulaganathan, M.; Babu, R. S.; Rajendran, S. Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for Li-ion battery applications. Ionics 2012, 18, 731.
[199]Yang, Y. W.; Chen, H. C.; Lin, F. J.; Chen, C. C. Polyacrylonitrile electrolytes : 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3. Solid State Ionics 2002, 150, 327.
[200]Chen, H. W.; Chang. F. C. Interaction mechanism of a novel polymer electrolyte composed of poly(acrylonitrile), lithium triflate, and mineral clay. J. Polym. Sci., Part B: Polym. Phys. 2001, 39, 2407.
[201]Sonobe, N.; Kyotani, T.; Tomita, A. Carbonization of poly-acrylonitrile in a two-dimensional space between montmorillonite lamellae. Carbon 1988, 26, 573.
[202]Kurth, D. G.; Bein, T. Surface reactions on thin layers of silane coupling agents. Langmuir 1993, 9, 2965.
[203]Liang, W. J.; Kuo, C. L.; Lin, C. L.; Kuo, P. L. Solid polymer electrolytes. IV. Preparation and characterization of novel crosslinked epoxy‐siloxane polymer complexes as polymer electrolytes. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1226.
[204]Ouyang, Q.; Cheng, L.; Wang, H.; Kaixi, L. Mechanism and Kinetics of The Stabilization Reactions of Ttaconic Acid-Modified polyacrylonitrile. Polym. Degrad. Stab. 2008, 93, 1415.
[205]Jannasch, P. Phase behavior and ion conductivity of electrolytes based on aggregating combshaped polyethers. Electrochim. Acta 2001, 46, 1641.
[206]陳秀真,「以金屬氧化物NiO和Mn3O4摻入有序中孔洞碳材作為鋰離子電池負極材料之應用」,國立中央大學,碩士論文,民國106年。
[207]Liu, L.-L.; An, M.-Z.; Yang, P.-X.; Zhang, J.-Q. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Sci. Rep. 2015, 5, 9055.
[208]Stuckert, E. P.; Fisher, E. R. Ar/O2 and H2O plasma surface modification of SnO2 nanomaterials to increase surface oxidation. Sens. Actuators, B 2015, 208, 379.
電子全文 電子全文(網際網路公開日期:20230731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔