(54.236.62.49) 您好!臺灣時間:2021/03/06 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳沛羽
研究生(外文):Pei-Yu Chen
論文名稱(外文):Analyzing the Sprite Emission Ratio from FORMOSAT-2 ISUAL Array Photometer Data
指導教授:郭政靈
指導教授(外文):Cheng-Ling Kuo
學位類別:碩士
校院名稱:國立中央大學
系所名稱:太空科學研究所
學門:自然科學學門
學類:天文及太空科學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:134
中文關鍵詞:紅色精靈福爾摩沙衛星二號高空大氣閃電影像儀陣列式光度計
外文關鍵詞:SpriteFORMOSAT-2ISUALArray Photometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
「高空大氣閃電影像儀」 (ISUAL, Imager of Sprite and Upper Atmospheric Lightning)是福爾摩沙衛星二號(FORMOSAT-2)上的科學酬載儀器,其任務目標不只是調查紅色精靈(Sprites)在全球的發生率分佈,也同時觀測紅色精靈(Sprites)所發出的可見光。在過去的研究中,Adachi et al. (2006, 2008)指出,利用ISUAL的「陣列式光度計」 (AP, Array Photometer)來測量出Sprites所發出的N2 2P (Second positive band)及N2 1P (First positive band)亮光,而計算出Streamer Peak的Reduced Electric Field為0.24~1.24 E_k(上方區域)及0.81~3.16 E_k(下方區域)。在這篇論文裡的Sprite Emission Ratio可以被視為了解驅動Sprites產生電漿化學反應電場的重要參數之一。
此篇論文使用ISUAL AP於2004年7月4日至2008年1月22日的資料及2009年1月18日至2013年1月24日含有ULF (Ultra Low Frequency)的資料,從中挑選28個事件使用Sum、Temporal Filter及Peak三種不同方法來進行Sprite Emission Ratio計算。與利用Photon Yield所計算出的Sprite Emission Ratio比較後,結果顯示在高度較高的時候,Sum、Temporal Filter及Peak這三種方法所計算出的Sprite Emission Ratio差異較小,在高度低的時候差異較大。Adachi et al. (2006, 2008)指出,這些差異變化是來自於高度預測誤差加上Quench項k_q [M]的指數增加所造成。此篇文章結果建議應加入一個一次指數函數〖ae〗^hx到氣體密度[M],使[M]值隨高度遞減而下降,並且低於原使用的[M]值。
在此篇文章中我們也將所分析計算出的Sprite Emission Ratio與利用電漿化學模型計算的結果做比較,結果顯示在5 E_k的Reduced Electric Field下所得到的N2 2P及N2 1P的發光率分別為5.6×〖10〗^16 photon/s及4.86×〖10〗^16 photon/s。模型所預估的N2 2P及N2 1P發光亮度分別為9.33×〖10〗^3 Rayleigh及8.1×〖10〗^3 Rayleigh。(1 Rayleigh=106 photon/cm2-column/s) 在使用三種不同方式計算結果與電漿化學模型結果比較下,利用Temporal Filter方法所計算出的平均Sprite Emission Ratio (1.17)與模型所計算出的Sprite Emission Ratio (1.15)最為接近。(Sum: 1.09;Peak: 1.93)
另外,利用ISUAL AP隨時間變化的訊號,可以計算出向上及向下Streamer移動速度約為107至108 m/s。在28個選出的Sprites事件中有15個事件有相對應的ULF資料,在這15個Sprite事件中,大部分的iCMC (impulse Charge Moment Change)都比最小能產生Sprite的iCMC值(>200 C-km)還要高,且有一個事件的Peak Current達到133 kA。未來可以透過調整氣體密度[M]、增加在較低(~40 km)及較高(~90 km)高度的模擬結果,以及增加分析事件數量來更進一步了解Sprite Emission Ratio、模型結果與三種分析方法的關係。
The ISUAL (Imager of Sprites and Upper Atmosphere Lightnings) is a scientific payload of FORMOSAT-2 satellite. The ISUAL project not only conducts the survey of the global occurring rate of sprites, but also investigates the optical emissions associated with sprites. In past studies, Adachi et al. (2006, 2008) reported that the sprite emission ratio of N2 2P (Second positive band) to N2 1P (First positive band) obtained from the ISUAL AP (Array Photometer) data can be used to derive the reduced electric field in the peak of streamers of recorded sprites. Adachi et al. (2006, 2008) also found that the reduced electric field is 0.24~1.24 E_k in the upper-diffuse region and 0.81~3.16 E_k in the lower-structured region of sprites. In this work, the sprite emission ratio can be one of the critical parameters to reveal the driving electric field in the plasma chemistry in sprites.
We used 28 selected sprite events from July 4th, 2004 to January 22nd, 2008 and January 18th, 2009 to January 24th, 2013 with ULF (Ultra Low Frequency) data from ISUAL array photometer (AP) on FORMOSAT-2 satellite to analyze the sprite emission ratio using the sum, temporal filter and peak three different methods. Compared the sprite emission ratios calculated from photon yield, the results show that the difference in the sprite emission ratio between the sum, temporal filter and peak methods are smaller at higher altitudes and larger at lower altitudes. This has been pointed out by Adachi et al. (2006, 2008) that the difference between different methods is a result of the errors in altitude estimation and the exponential increase of the quenching term k_q [M]. Our results suggest that with altitude decrease, a one-term exponential parameter 〖ae〗^hx should let quencher density [M] become lower than the original [M] in central Africa.
In this work, we also compared the sprite emission ratios with plasma chemistry model. The result shows that the sprite emission rates 5.6×〖10〗^16 photon/s for N2 2P and 4.86×〖10〗^16 photon/s for N2 1P at the reduced electric field of 5 E_k. The estimated brightness of N2 2P and N2 1P calculated by the model are 9.33×〖10〗^3 Rayleigh and 8.1×〖10〗^3 Rayleigh, respectively (1 Rayleigh = 106 photon/cm2-column/s). Compared with the sprite emission ratio estimated from the model (1.15), the average sprite emission ratio calculated using the temporal filter method at 70 km height (1.17) has the most similar value among three methods (the sum method: 1.09; the peak method: 1.93).
In addition, our data also show the speeds of the downward and upward moving streamers were calculated using time-series signals of ISUAL AP, and it gives a range of ~107 to ~108 m/s. Among the 28 selected sprite events, 15 events have ULF data. Within these 15 sprite events, most of the impulse charge moment changes (iCMCs) are higher than the threshold of producing sprites (>200 C-km) and one of the sprite events shows a relatively stronger peak current of 133 kA. In the future, we can modify the quencher [M], add the model results at lower (~40 km) or higher (~90 km) altitudes and increase the samples of sprite events to understand of the relations of the sprite emission ratio between the three methods and the model results.
中文摘要 i
Abstract iii
致謝 v
Content vi
List of Figures viii
List of Tables xiv
Chapter 1 Introduction 1
1.1 Sprites 1
1.2 Observations 2
1.2.1 Ground observations 2
1.2.2 Aviation and space-based observations 3
1.3 Aims of the thesis 4
Chapter 2 Methods 6
2.1 Data resources 6
2.1.1 FORMOSAT-2 6
2.1.2 Imager of Sprites and Upper Atmospheric Lightnings (ISUAL) 7
2.1.3 ULF station and National Lightning Detection Network (NLDN) 9
2.2 Data statistics 10
2.3 Calculation of the sprite emission ratio 12
2.3.1 The ratio of the blue to red emission 12
2.3.2 Emission intensity I of N2 1P and N2 2P 13
2.3.3 Altitude calculation and quenching effects 20
2.3.4 The calculation and plasma chemistry model of the sprite emission ratio 26
Chapter 3 Results 29
3.1 The sprite emission ratio 29
3.1.1 The sprite emission ratio from AP 30
3.1.2 The comparison of the model and the sprite emission ratio from AP 35
3.1.3 The example of lightning contamination on the sprite emission ratio: 2009/05/20 04:33:57.033 (UT) 37
3.2 The speed of streamers from the AP signals: 2005/07/30 04:39:42.742 (UT) and 2007/07/17 11:38:13.200 (UT) 39
3.3 Analysis of ULF data of sprite events 41
Chapter 4 Discussion 43
4.1 Data resources 43
4.2 The sprite emission ratio 43
4.3 The comparison of the model and the sprite emission ratio from AP 46
4.4 The speed of streamers from the AP signals 47
4.5 Analysis of ULF data of sprite events 47
Chapter 5 Summary 49
References 52
Figures 58
Tables 93
Appendix A 100
Appendix B 112
[ 1 ] Sentman, D. D., Wescott, E. M., Osborne, D. L., Hampton, D. L., & Heavner, M. J. (1995). Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophysical Research Letters, 22(10), 1205-1208.
[ 2 ] Kuo, C. L., Chen, A. B., Chou, J. K., Tsai, L. Y., Hsu, R. R., Su, H. T., ... & Lee, L. C. (2008). Radiative emission and energy deposition in transient luminous events. Journal of Physics D: Applied Physics,41(23), 234014.
[ 3 ] Franz, R. C., Nemzek, R. J., & Winckler, J. R. (1990). Television image of a large upward electrical discharge above a thunderstorm system. Science, 249(4964), 48-51.
[ 4 ] Stenbaek-Nielsen, H. C., Kanmae, T., McHarg, M. G., & Haaland, R. (2013). High-speed observations of sprite streamers. Surveys in Geophysics, 34(6), 769-795.
[ 5 ] Peng, K. M., Hsu, R. R., Su, H. T., Chen, A., Chou, J. K., Chang, S. C., ... & Tsai, S. H. (2017). Transient luminous event coordinated observations using FORMOSAT-2 satellite and Taiwan sprites campaign. Terrestrial, Atmospheric & Oceanic Sciences, 28(4).
[ 6 ] Sentman, D. D., Stenbaek‐Nielsen, H. C., McHarg, M. G., & Morrill, J. S. (2008). Plasma chemistry of sprite streamers. Journal of Geophysical Research: Atmospheres, 113(D11).
[ 7 ] Ihaddadene, M. A., & Celestin, S. (2017). Determination of sprite streamers altitude based on N2 spectroscopic analysis. Journal of Geophysical Research: Space Physics, 122(1), 1000-1014.
[ 8 ] 呂旻叡,「影像式光譜儀的實作與紅色精靈光譜研究」,國立中央大學,碩士論文,民國105年。
[ 9 ] Pasko, V. P., Inan, U. S., Bell, T. F., & Taranenko, Y. N. (1997). Sprites produced by quasi‐electrostatic heating and ionization in the lower ionosphere. Journal of Geophysical Research: Space Physics, 102(A3), 4529-4561. 
[ 10 ] Lyons, W. A. (1996). Sprite observations above the US High Plains in relation to their parent thunderstorm systems. Journal of Geophysical Research: Atmospheres, 101(D23), 29641-29652.
[ 11 ] Vaughan, O. H., & Vonnegut, B. (1982). Lightning to the ionosphere? Weatherwise, 35, 70-71.
[ 12 ] Vaughan, O. H., & Vonnegut, B. (1989). Recent observations of lightning discharges from the top of a thundercloud into the clear air above.Journal of Geophysical Research: Atmospheres,94(D11), 13179-13182.
[ 13 ] Vaughan Jr, O. H., Blakeslee, R., Boeck, W. L., Vonnegut, B., Brook, M., & McKune Jr, J. (1992). A cloud-to-space lightning as recorded by the space shuttle payload-bay TV cameras. Monthly Weather Review, 120(7), 1459-1461.
[ 14 ] Sentman, D. D., & Wescott, E. M. (1993). Observations of upper atmospheric optical flashes recorded from an aircraft. Geophysical Research Letters, 20(24), 2857-2860.
[ 15 ] Boeck, W. L., Vaughan, O. H., Blakeslee, R. J., Vonnegut, B., Brook, M., & McKune, J. (1995). Observations of lightning in the stratosphere. Journal of Geophysical Research: Atmospheres, 100(D1), 1465-1475.
[ 16 ] Boeck, W. L., Vaughan Jr, O. H., Blakeslee, R. J., Vonnegut, B., & Brook, M. (1998). The role of the space shuttle videotapes in the discovery of sprites, jets and elves. Journal of Atmospheric and Solar-Terrestrial Physics, 60(7-9), 669-677.
[ 17 ] Jehl, A., Farges, T., & Blanc, E. (2013). Color pictures of sprites from non‐dedicated observation on board the International Space Station. Journal of Geophysical Research: Space Physics, 118(1), 454-461.
[ 18 ] Yair, Y. (2006). Observations of transient luminous events from earth orbit. IEEJ Transactions on Fundamentals and Materials, 126(4), 244-249.
[ 19 ] Blanc, E. (2010). Space observations of Transient Luminous Events and associated emissions in the upper atmosphere above thunderstorm areas. Comptes Rendus Geoscience, 342(4-5), 312-322. 
[ 20 ] Yair, Y., Rubanenko, L., Mezuman, K., Elhalel, G., Pariente, M., Glickman-Pariente, M., ... & Inoue, T. (2013). New color images of transient luminous events from dedicated observations on the International Space Station. Journal of Atmospheric and Solar-Terrestrial Physics, 102, 140-147.
[ 21 ] Adachi, T., Hiraki, Y., Yamamoto, K., Takahashi, Y., Fukunishi, H., Hsu, R. R., ... & Lee, L. C. (2008). Electric fields and electron energies in sprites and temporal evolutions of lightning charge moment. Journal of Physics D: Applied Physics, 41(23), 234010.
[ 22 ] Kuo, C. L., Chang, S. C., Lee, L. J., Huang, T. Y., Chen, A. B., Su, H. T., ... & Takahashi, Y. (2011). The 762 nm emissions of sprites. Journal of Geophysical Research: Space Physics, 116(A1).
[ 23 ] Kuo, C. L., Chen, A. B., Lee, Y. J., Tsai, L. Y., Chou, R. K., Hsu, R. R., ... & Mende, S. B. (2007). Modeling elves observed by FORMOSAT‐2 satellite. Journal of Geophysical Research: Space Physics, 112(A11).
[ 24 ] Chern, R. J. S., Lin, S. F., & Wu, A. M. (2015). Ten-year transient luminous events and Earth observations of FORMOSAT-2. Acta Astronautica, 112, 37-47.
[ 25 ] FormoSat-2 - eoPortal Directory (https://directory.eoportal.org/web/eoportal/satellite-missions/f/formosat-2)
[ 26 ] 吳彥蓉,「氧原子為淘氣精靈、夜間 D 層電子濃度遽增及OH*Meinel 波段大氣輝光發生高度之關鍵因素」,國立成功大學,博士論文,民國105年。
[ 27 ] W. H. Chen, "Aged FORMOSAT-2 decommissioned" Taipei Times, Aug. 22, 2016, (http://www.taipeitimes.com/News/front/archives/2016/08/22/2003653607).
[ 28 ] Space Sciences Laboratory of University of California, Berkeley, "The ROCSAT 2 ISUAL investigation", (http://sprg.ssl.berkeley.edu/sprite/ago96/isual/ROCSAT.html).
[ 29 ] Chern, J. L., R. R. Hsu, H. T. Su, S. B. Mende, H. Fukunishi, Y. Takahashi, L .C. Lee, "Global Survey of Transient Luminous Events by ROCSat-2 Satellite, Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 65, 2003, pp. 647– 659. 
[ 30 ] Imager of Sprite/ Upper Atmospheric Lightning (ISUAL)-NCKU,
(http://sprite.phys.ncku.edu.tw/En/Eindex.html)
[ 31 ] Frey, H. U., Mende, S. B., Harris, S. E., Heetderks, H., Takahashi, Y., Su, H. T., ... & Lee, L. C. (2016). The Imager for Sprites and Upper Atmospheric Lightning (ISUAL). Journal of Geophysical Research: Space Physics, 121(8), 8134-8145.
[ 32 ] Lu, G., Cummer, S. A., Li, J., Han, F., Blakeslee, R. J., & Christian, H. J. (2009). Charge transfer and in‐cloud structure of large‐charge‐moment positive lightning strokes in a mesoscale convective system. Geophysical Research Letters, 36(15).
[ 33 ] Gaopeng Lu (陆高鹏), Professor, Institute of Atmospheric Physics, Chinese Academy of Sciences. (http://www.escience.cn/people/gaopenglu/index.html)
[ 34 ] Cohen, M. B., Inan, U. S., Said, R. K., Briggs, M. S., Fishman, G. J., Connaughton, V., & Cummer, S. A. (2010). A lightning discharge producing a beam of relativistic electrons into space. Geophysical Research Letters, 37(18).
[ 35 ] National Lightning Detection Network® (NLDN)
(https://www.vaisala.com/en/products/data-subscriptions-and-reports/data-sets/nldn)
[ 36 ] Tang, K., Tibaudo, C., & Schroeder, J. W. (2003, September). Advanced software products for atmospheric remote sensing. In Targets and Backgrounds IX: Characterization and Representation (Vol. 5075, pp. 293-300). International Society for Optics and Photonics.
[ 37 ] 周建忠,「聯合觀測喜馬拉雅山區上空重力波與紅色精靈.」,國立中央大學,博士論文,民國106年。
[ 38 ] Yukihiro Takahashi, “ISUAL Array Photometer (AP) Science Performance Test Report”, 2003.
( http://formosat.tw/nspo_esok/download/about_isual/AP_Cal_Report2.pdf)
[ 39 ] Smith, D. A., Shao, X. M., Holden, D. N., Rhodes, C. T., Brook, M., Krehbiel, P. R., ... & Thomas, R. J. (1999). A distinct class of isolated intracloud lightning discharges and their associated radio emissions. Journal of Geophysical Research: Atmospheres, 104(D4), 4189-4212.
[ 40 ] Chen, A. B.-C, AP_SCALE.PRO program (http://sprite.phys.ncku.edu.tw/tw/software-download)
[ 41 ] Quenching(Wiki)-https://en.wikipedia.org/wiki/Quenching_(fluorescence)
[ 42 ] Quenching effect-https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/fluorescent-probes.html
[ 43 ] Armstrong, R. A. and Lyons, W. A. (2000). Satellite and ground-based data exploitation for NUDET discrimination, characterizing atmospheric electrodynamic emissions from lightning, sprites, jets and elves. Final Report, DOE Contract #DE-AC04-98AL79469, 213 pp.
[ 44 ] Virtual Ionosphere, Thermosphere, Mesosphere Observatory (VITMO)- MSIS-E-90 Atmosphere Model (https://cohoweb.gsfc.nasa.gov/vitmo/msis_vitmo.html)
[ 45 ] Chen, A. B., Kuo, C. L., Lee, Y. J., Su, H. T., Hsu, R. R., Chern, J. L., ... & Chang, Y. S. (2008). Global distributions and occurrence rates of transient luminous events. Journal of Geophysical Research: Space Physics, 113(A8).
[ 46 ] Kamaratos, E. (2009). Comment on “Plasma chemistry of sprite streamers” by DD Sentman, HC Stenbaek‐Nielsen, MG McHarg, and JS Morrill. Journal of Geophysical Research: Atmospheres, 114(D8).
[ 47 ] Adachi, T., Fukunishi, H., Takahashi, Y., Hiraki, Y., Hsu, R. R., Su, H. T., ... & Lee, L. C. (2006). Electric field transition between the diffuse and streamer regions of sprites estimated from ISUAL/array photometer measurements. Geophysical research letters, 33(17).
[ 48 ] McHarg, M. G., Stenbaek‐Nielsen, H. C., & Kammae, T. (2007). Observations of streamer formation in sprites. Geophysical research letters, 34(6).
[ 49 ] Stenbaek‐Nielsen, H. C., McHarg, M. G., Kanmae, T., & Sentman, D. D. (2007). Observed emission rates in sprite streamer heads. Geophysical research letters, 34(11).
[ 50 ] Li, J., & Cummer, S. A. (2009). Measurement of sprite streamer acceleration and deceleration. Geophysical Research Letters, 36(10). 
[ 51 ] Liu, N. Y., Pasko, V. P., Adams, K., Stenbaek‐Nielsen, H. C., & McHarg, M. G. (2009). Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high‐speed video observations. Journal of Geophysical Research: Space Physics, 114(A3).
[ 52 ] Sentman, D. D., & Stenbaek-Nielsen, H. C. (2009). Chemical effects of weak electric fields in the trailing columns of sprite streamers. Plasma Sources Science and Technology, 18(3), 034012.
[ 53 ] Huang, E., Williams, E., Boldi, R., Heckman, S., Lyons, W., Taylor, M., ... & Wong, C. (1999). Criteria for sprites and elves based on Schumann resonance observations. Journal of Geophysical Research: Atmospheres, 104(D14), 16943-16964.
[ 54 ] Lu, G., Cummer, S. A., Li, J., Zigoneanu, L., Lyons, W. A., Stanley, M. A., ... & Beasley, W. H. (2013). Coordinated observations of sprites and in‐cloud lightning flash structure. Journal of Geophysical Research: Atmospheres, 118(12), 6607-6632.
[ 55 ] Soula, S., Van Der Velde, O., Montanya, J., Fullekrug, M., Mezentsev, A., & Mlynarczyk, J. (2016). Characteristics of lightning flashes generating sprites above storms. In E3S Web of Conferences (Vol. 12, p. 02001). EDP Sciences.
[ 56 ] Cummer, S. A., Lyons, W. A., & Stanley, M. A. (2013). Three years of lightning impulse charge moment change measurements in the United States. Journal of Geophysical Research: Atmospheres, 118(11), 5176-5189.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔