(3.238.186.43) 您好!臺灣時間:2021/03/01 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:武昱成
研究生(外文):Yu-Cheng Wu
論文名稱(外文):Decomposition of methanol on vanadium nanoclusters supported by graphene/Ru(0001) and Al2O3/NiAl(100)
指導教授:羅夢凡
指導教授(外文):Meng-Fan Luo
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:82
中文關鍵詞:氧化鋁石墨烯催化
外文關鍵詞:vanadiumAl2O3graphenecatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
甲醇的催化分解反應被廣泛的研究,是由於可以應用在甲醇燃料電池(DMFC)上,作為燃料電池的主要產物氫氣的供應來源,並有著提供高效率的電能轉換效率的未來展望。在甲醇燃料電池(DMFC)上的氫氣產量主要是由其甲醇催化反應所控制,因此對觸媒的反應動力學及反應能力與催化劑的結構的關係的相關知識是改善甲醇燃料電池催化分解反應的必備條件。
為了研究重氫甲醇(CD3OD)在釩(Vanadium)奈米粒子鍍在graphene/Ru(0001) 及 θ-Al2O3/NiAl(100)兩種不同的基板上的催化分解反應,我們藉由熱脫附質譜(TPD)和紅外光反射吸收能譜(IRAS)表面探測技術在超高真空的環境下進行表面量測。當釩奈米粒子鍍在graphene/Ru(0001)上時甲醇並沒有任何的產物從表面脫附出來,包括CO及氫氣之類的甲醇分解的常見產物。但從紅外光反射吸收能譜卻可以觀察到C-O斷鍵在180 K時開始發生。吸附在樣品表面的甲醇看起來是有反應的,但缺沒有任何的產物從表面上脫附出來,可能是因為分解後的產物持續殘留在表面上。然而釩奈米粒子鍍在θ-Al2O3/NiAl(100)的反應路徑主要通過脫氫及C-O斷鍵。而C-O斷鍵的發生是在180 K左右,後續的氫氧根及甲基則會繼續經過脫氫形成C及O原子而持續殘留在表面上。而部分的甲基會與從甲醇脫氫下來的氫原子再結合形成甲烷並在400 K時脫附出來。
The catalytic decomposition of methanol (CH3OH) is extensively investigated because the principal reaction is applied in direct methanol fuel cells (DMFC), which offer a prospect of efficient conversion of methanol to electricity, and because it can serve as a source of hydrogen. As the performance of DMFC or the production of hydrogen is governed largely by the catalyzed reaction, a knowledge of the detailed reaction kinetics and a correlation between reactivity and structure of the catalysts are desirable. To respond to the demand, we investigated the adsorption and reaction of methanol-d4 (CD3OD) on vanadium (V) nanocluster supported on graphene grown on Ru(0001) single crystal and θ-Al2O3/NiAl(100), under ultrahigh vacuum conditions and with infrared reflection absorption spectroscopy and temperature programmed desorption.
TPD results shows the distinct desorption of HD, D2 and methane from the surface around 400 K; there is no any CO desorption feature was found indicating CO bond scission along with dehydrogenation. The IRAS results show the C-O bond scission of methanol-d4 or methoxy start around 180 K. From TPD and IRAS results we have two different guess for the methanola-d4 reaction route on the V/Al2O3/NiAl(100). First, on the V surface the O-D bond scission happen and as the temperature reach to 180 K the C-O bond scission of methoxy takes place. The other guess is O-D bond scission after the C-O bond scission, thereafter; all the products dehydrogenated further to atomic oxygen, deuterium and carbon then diffused into V nanoclusters or substrate. For methanol-d4 on the V nanoclusters/graphene/Ru(0001), the TPD spectra show desorption of methanol-d4 only. Further, the vibration of CD3 from the IRAS spectra has a red shift reveal the C-O bond scission of methanol-d4. It seems that methanol-d4 decomposes on the V nanoclusters while all the products diffuse into the substrate.
Content

Chapter 1 Introduction 1
Chapter 2 Literature survey 5
2.1 The Characterization of θ-Al2O3/NiAl(100) and graphene/Ru(0001) 5
2.1.1 θ-Al2O3/NiAl(100) 5
2.2.2 Graphene/Ruthenium(0001) 8
2.2 CO on V(111) 13
2.3 Methanol on V surfaces and clusters 14
2.3.1 Methanol on V(100) 14
2.3.2 Methanol on V(110) 19
2.3.3 Methanol on polycrystalline V 23
Chapter 3 Experiment Methods and Apparatus 31
3.1 Experiment methods 31
3.1.1 Cleaning NiAl(100) and Ru(0001) 31
3.1.2 θ-Al2O3 and graphene ultrathin film growth 32
3.1.3 Vapor deposition of V 33
3.1.4 Methanol adsorption and reaction 33
3.2 Temperature programmed desorption (TPD) 34
3.3 Infrared reflection adsorption spectroscopy (IRAS) 39
3.4 Fourier Transform Interferometers 43
3.5 The Redesign of Infrared reflection adsorption spectroscopy (IRAS) chamber 45
Chapter 4 Results and discussions 48
4.1 Adsorbed CO as a probe on V clusters/Al2O3/NiAl(100) 48
4.1.1 TPD spectra for CO on V clusters /Al2O3/NiAl(100) 48
4.1.2 IRAS spectra for CO on V clusters/Al2O3/NiAl(100) 49
4.2 Methanol-d4 decomposition on V clusters/Al2O3/NiAl(100) 51
4.2.1 TPD spectra for methanol-d4 on V clusters/Al2O3/NiAl(100) 51
4.2.2 IRAS spectra for methanol-d4 on V clusters/Al2O3/NiAl(100) 54
4.3 Adsorbed CO as a probe of V clusters on graphene/Ru(0001) 58
4.3.1 TPD spectra for CO on V clusters/graphene/Ru(0001) 58
4.3.2 IRAS spectra for CO on V clusters/graphene/Ru(0001) 59
4.4 Methanol-d4 decomposition on V clusters supported by graphene/Ru(0001) 61
4.4.1 TPD spectra for methanol-d4 on V clusters on graphene/Ru(0001) 61
4.2.2 IRAS spectra for methanol-d4 on V clusters on graphene/Ru(0001) 62
Chapter 5 Conclusion 66
[1] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, Scanning tunneling microscopy study of growth of Pt nanoclusters on thin film Al2O3/NiAl(100), Surface Science, 600 (2006) 4978-4985.
[2] J. Wintterlin, M.L. Bocquet, Graphene on metal surfaces, Surface Science, 603 (2009) 1841-1852.
[3] M. Shen, F. Zaera, Methanol Adsorption on Clean and Oxygen-Predosed V(100) Single-Crystal Surfaces, The Journal of Physical Chemistry C, 112 (2008) 1636-1644.
[4] M.B. Zellner, H.H. Hwu, J.G. Chen, Comparative studies of methanol decomposition on carbide-modified V(110) and Ti(0001), Surface Science, 598 (2005) 185-199.
[5] R. Souda, Thermal Decomposition of Thin Methanol Films on Deoxygenated Vanadium, The Journal of Physical Chemistry C, 118 (2014) 11333-11339.
[6] G.-R. Hu, C.-S. Chao, H.-W. Shiu, C.-T. Wang, W.-R. Lin, Y.-J. Hsu, M.-F. Luo, Low-temperature decomposition of methanol on Au nanoclusters supported on a thin film of Al2O3/NiAl(100), Physical Chemistry Chemical Physics, 13 (2011) 3281-3290.
[7] S. Marchini, S. Günther, J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001), Physical Review B, 76 (2007) 075429.
[8] M.J. van Staden, J.P. Roux, The superposition of carbon and ruthenium auger spectra, Applied Surface Science, 44 (1990) 259-262.
[9] D.W. Goodman, J.M. White, Measurement of active carbon on ruthenium (110): Relevance to catalytic methanation, Surface Science, 90 (1979) 201-203.
[10] N.C.M. L. E. Davis, P. W. Palmberg, G. E. Riach, and R. E.Weber, Handbook of Auger Electron Spectroscopy, Perkin Elmer, Eden Prairie, MN, 1978.
[11] Y. Pan, D.-X. Shi, H.-J. Gao, Formation of graphene on Ru(0001) surface, Chinese Physics, 16 (2007) 3151.
[12] J. Tersoff, Anomalous Corrugations in Scanning Tunneling Microscopy: Imaging of Individual States, Physical Review Letters, 57 (1986) 440-443.
[13] F.J. Himpsel, K. Christmann, P. Heimann, D.E. Eastman, P.J. Feibelman, Adsorbate band dispersions for C on Ru(0001), Surface Science, 115 (1982) L159-L164.
[14] T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition, Surface Science, 264 (1992) 261-270.
[15] M. Shen, F. Zaera, Thermal Chemistry of Water Adsorbed on Clean and Oxygen-Predosed V(100) Single-Crystal Surfaces, The Journal of Physical Chemistry C, 111 (2007) 13570-13578.
[16] F. Zaera, An Organometallic Guide to the Chemistry of Hydrocarbon Moieties on Transition Metal Surfaces, Chemical Reviews, 95 (1995) 2651-2693.
[17] F. Zaera, Preparation and reactivity of alkyl groups adsorbed on metal surfaces, Accounts of Chemical Research, 25 (1992) 260-265.
[18] F. Zaera, Reversibility of C1 hydrogenation-dehydrogenation reactions on platinum surfaces under vacuum, Langmuir, 7 (1991) 1998-1999.
[19] S. Tjandra, F. Zaera, Thermal Reactions of Alkyl Iodides on Ni(100) Single Crystal Surfaces, Journal of the American Chemical Society, 117 (1995) 9749-9755.
[20] F. Zaera, H. Hoffmann, Detection of chemisorbed methyl and methylene groups: surface chemistry of methyl iodide on platinum(111), The Journal of Physical Chemistry, 95 (1991) 6297-6303.
[21] H. Guo, F. Zaera, Thermal Chemistry of Iodomethane on Ni(110). 1. Clean and Hydrogen-Predosed Surfaces, The Journal of Physical Chemistry B, 108 (2004) 16220-16225.
[22] H. Guo, F. Zaera, Thermal Chemistry of Iodomethane on Ni(110). 2. Effect of Coadsorbed Oxygen, The Journal of Physical Chemistry B, 108 (2004) 16226-16232.
[23] F. Solymosi, Oxidation of hydrocarbon fragments on metal single crystals and on supported metals, Journal of Molecular Catalysis A: Chemical, 131 (1998) 121-133.
[24] H.H. Hwu, J.G. Chen, K. Kourtakis, J.G. Lavin, Potential Application of Tungsten Carbides as Electrocatalysts. 1. Decomposition of Methanol over Carbide-Modified W(111), The Journal of Physical Chemistry B, 105 (2001) 10037-10044.
[25] H.H. Hwu, J.G. Chen, Potential Application of Tungsten Carbides as Electrocatalysts:  4. Reactions of Methanol, Water, and Carbon Monoxide over Carbide-Modified W(110), The Journal of Physical Chemistry B, 107 (2003) 2029-2039.
[26] H.H. Hwu, J.G. Chen, Reactions of methanol and water over carbide-modified Mo(110), Surface Science, 536 (2003) 75-87.
[27] H. Wang, C.-z. He, L.-y. Huai, F.-m. Tao, J.-y. Liu, Decomposition of Methanol on Clean and Oxygen-Predosed V(100): A First-Principles Study, The Journal of Physical Chemistry C, 116 (2012) 25344-25353.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔