|
Batzoglou, S., L. Pachter, J. P. Mesirov, B. Berger, and E. S. Lander (2000). Human and mouse gene structure: comparative analysis and application to exon prediction. Genome research 10(7), 950–958. Bourlard, H. and N. Morgan (1993). Continuous speech recognition by connectionist statistical methods. IEEE Transactions on Neural Networks 4(6), 893–909. Bourlard, H. and C. J. Wellekens (1989). Links between markov models and multilayer perceptrons. In Advances in neural information processing systems, pp. 502–510. Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio (2014). Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. Girshick, R. (2015). Fast r-cnn. arXiv preprint arXiv:1504.08083. Graves, A., A.-r. Mohamed, and G. Hinton (2013). Speech recognition with deep recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, pp. 6645–6649. IEEE. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica: Journal of the Econometric Society, 357–384. He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. Mohanty, S. P., D. P. Hughes, and M. Salathé (2016). Using deep learning for image-based plant disease detection. Frontiers in plant science 7, 1419. Pedersen, J. S. and J. Hein (2003). Gene finding with a hidden markov model of genome structure and evolution. Bioinformatics 19(2), 219–227. Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286. Rajpurkar, P., J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, et al. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225. Richard, M. D. and R. P. Lippmann (1991). Neural network classifiers estimate bayesian a posteriori probabilities. Neural computation 3(4), 461–483. Sinha, A., H. Namkoong, and J. Duchi (2017). Certifiable distributional robustness with principled adversarial training. arXiv preprint arXiv:1710.10571. Weng, T.-W., H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel (2018). Evaluating the robustness of neural networks: An extreme value theory approach. arXiv preprint arXiv:1801.10578.
|