|
1. Hinton, G.E., S. Osindero, and Y.-W. Teh, A fast learning algorithm for deep belief nets. Neural Comput., 2006. 18(7): p. 1527-1554. 2. Mikolov, T., et al. Recurrent neural network based language model. in INTERSPEECH. 2010. 3. Lecun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. 86(11): p. 2278-2324. 4. Krizhevsky, A., I. Sutskever, and G.E. Hinton, ImageNet classification with deep convolutional neural networks, in Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. 2012, Curran Associates Inc.: Lake Tahoe, Nevada. p. 1097-1105. 5. Deng, J., et al. ImageNet: A large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009. 6. Simonyan, K. and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, 2014. abs/1409.1556. 7. Szegedy, C., et al., Going Deeper with Convolutions. CoRR, 2014. abs/1409.4842. 8. He, K., et al. Deep Residual Learning for Image Recognition. ArXiv e-prints, 2015. 1512. 9. Girshick, R., et al. Rich feature hierarchies for accurate object detection and semantic segmentation. ArXiv e-prints, 2013. 1311. 10. Girshick, R. Fast R-CNN. ArXiv e-prints, 2015. 1504. 11. Ren, S., et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. ArXiv e-prints, 2015. 1506. 12. Lowe, D.G., Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision, 2004. 60(2): p. 91-110. 13. Dalal, N. and B. Triggs. Histograms of oriented gradients for human detection. in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). 2005. 14. Liu, W., et al., SSD: Single Shot MultiBox Detector. CoRR, 2015. abs/1512.02325. 15. Lin, T.-., Yi, et al., Feature Pyramid Networks for Object Detection. CoRR, 2016. abs/1612.03144. 16. TorchCV: a PyTorch vision library mimics ChainerCV. https://github.com/kuangliu/torchcv. 17. Everingham, M., et al., The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 2010. 88(2): p. 303-338. 18. Wang, F., et al., Residual Attention Network for Image Classification. CoRR, 2017. abs/1704.06904. 19. Hebb, D.O., The organization of behavior: A neuropsychological theory. 1949, New York: Wiley. 20. Rosenblatt, F., The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain. Psychological Review, 1958: p. 65-386. 21. Marvin, M., and Papert Seymour, Perceptrons. 1969. 22. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning representations by back- propagating errors. Nature, 1986. 323: p. 533. 23. Werbos, P.J., Backpropagation Through Time: What It Does and How to Do It. Proceedings of the IEEE, 1990. 78(10): p. 1550-1560. 24. Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8): p. 1735-1780. 25. Long, J., E. Shelhamer, and T. Darrell Fully Convolutional Networks for Semantic Segmentation. ArXiv e-prints, 2014. 1411. 26. Introduction to Different Activation Functions for Deep Learning. https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for- deep-learning-9689331ba092. 27. Huang, G., Z. Liu, and K.Q. Weinberger, Densely Connected Convolutional Networks. CoRR, 2016. abs/1608.06993. 28. Szegedy, C., S. Ioffe, and V. Vanhoucke, Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. CoRR, 2016. abs/1602.07261. 29. Ioffe, S. and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. CoRR, 2015. abs/1502.03167. 30. Szegedy, C., et al., Rethinking the Inception Architecture for Computer Vision. CoRR, 2015. abs/1512.00567. 31. Lin, M., Q. Chen, and S. Yan, Network In Network. CoRR, 2013. abs/1312.4400. 32. Yu, F. and V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions. CoRR, 2015. abs/1511.07122. 33. Dai, J., et al., Deformable Convolutional Networks. CoRR, 2017. abs/1703.06211. 34. Jaderberg, M., et al. Spatial Transformer Networks. ArXiv e-prints, 2015. 1506. 35. Farfade, S.S., M.J. Saberian, and L.-. Li, Jia, Multi-view Face Detection Using Deep Convolutional Neural Networks. CoRR, 2015. abs/1502.02766. 36. Dollár, P., et al., Fast Feature Pyramids for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014. 36(8): p. 1532-1545. 37. Lienhart, R. and J. Maydt. An extended set of Haar-like features for rapid object detection. in Proceedings. International Conference on Image Processing. 2002. 38. Maćkiewicz, A. and W. Ratajczak, Principal components analysis (PCA). Computers & Geosciences, 1993. 19(3): p. 303 - 342. 39. Felzenszwalb, P.F., et al., Object Detection with Discriminatively Trained Part-Based Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010. 32(9): p. 1627-1645. 40. Cortes, C. and V. Vapnik, Support-Vector Networks. Machine Learning, 1995. 20(3): p. 273-297. 41. Sermanet, P., et al., OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. CoRR, 2013. abs/1312.6229. 42. Huang, J., et al., Speed/accuracy trade-offs for modern convolutional object detectors. CoRR, 2016. abs/1611.10012. 43. Uijlings, J.R.R., et al., Selective Search for Object Recognition. International Journal of Computer Vision, 2013. 104(2): p. 154-171. 44. He, K., et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. ArXiv e-prints, 2014. 1406. 45. Dai, J., et al., R-FCN: Object Detection via Region-based Fully Convolutional Networks. CoRR, 2016. abs/1605.06409. 46. He, K., et al. Mask R-CNN. ArXiv e-prints, 2017. 1703. 47. Redmon, J., et al., You Only Look Once: Unified, Real-Time Object Detection. CoRR, 2015. abs/1506.02640. 48. Redmon, J. and A. Farhadi, YOLOv3: An Incremental Improvement. CoRR, 2018. abs/1804.02767. 49. Redmon, J. and A. Farhadi, YOLO9000: Better, Faster, Stronger. CoRR, 2016. abs/1612.08242. 50. Lin, T.-., Yi, et al., Focal Loss for Dense Object Detection. CoRR, 2017. abs/1708.02002. 51. Fu, C.-., Yang, et al., DSSD : Deconvolutional Single Shot Detector. CoRR, 2017. abs/1701.06659. 52. Li, Z. and F. Zhou, FSSD: Feature Fusion Single Shot Multibox Detector. CoRR, 2017. abs/1712.00960. 53. Shrivastava, A., A. Gupta, and R.B. Girshick, Training Region-based Object Detectors with Online Hard Example Mining. CoRR, 2016. abs/1604.03540. 54. Zhang, K., et al., Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks. CoRR, 2016. abs/1604.02878. 55. Kong, T., et al., HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection. CoRR, 2016. abs/1604.00600. 56. Liu, S., et al., Path Aggregation Network for Instance Segmentation. CoRR, 2018. abs/1803.01534. 57. Singh, B. and L.S. Davis, An Analysis of Scale Invariance in Object Detection - SNIP. CoRR, 2017. abs/1711.08189. 58. Nallapati, R., B. Xiang, and B. Zhou, Sequence-to-Sequence RNNs for Text Summarization. CoRR, 2016. abs/1602.06023. 59. Bahdanau, D., K. Cho, and Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate. CoRR, 2014. abs/1409.0473. 60. Chung, J., et al., Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR, 2014. abs/1412.3555. 61. Xu, K., et al., Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. CoRR, 2015. abs/1502.03044. 62. Chen, L.-., Chieh, et al., Attention to Scale: Scale-aware Semantic Image Segmentation. CoRR, 2015. abs/1511.03339. 63. Zhao, B., et al., Diversified Visual Attention Networks for Fine-Grained Object Classification. IEEE Transactions on Multimedia, 2017. 19(6): p. 1245-1256. 64. Hu, J., L. Shen, and G. Sun, Squeeze-and-Excitation Networks. CoRR, 2017. abs/1709.01507. 65. Stollenga, M.F., et al., Deep Networks with Internal Selective Attention through Feedback Connections. CoRR, 2014. abs/1407.3068. 66. Chen, L., et al., SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning. CoRR, 2016. abs/1611.05594. 67. Lin, T.-Y., et al. Microsoft COCO: Common Objects in Context. 2014. Cham: Springer International Publishing.
|