(54.236.58.220) 您好!臺灣時間:2021/02/27 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃欣儀
研究生(外文):Hsin-Yi Huang
論文名稱:以UTAUT2結合文化價值探討行動支付使用意圖
指導教授:李小梅李小梅引用關係
指導教授(外文):Shau-Mei Li
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:88
中文關鍵詞:行動支付延伸整合科技接受模式Hofstede 文化價值感知風險
外文關鍵詞:Mobile PaymentUTAUT2Hofstede Culture ValuePerceived Risk
相關次數:
  • 被引用被引用:14
  • 點閱點閱:837
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:397
  • 收藏至我的研究室書目清單書目收藏:0
隨著行動裝置和行動網路日益普及,民眾可以在行動裝置上做得事情越來越多樣化,不管是食衣住行育樂,只要智慧型手機在身邊,幾乎是無所不能,現在連支付都可以行動化。隨著 Apple Pay 2017 年 3 月在台灣正式啟用,台灣開始掀起行動支付風潮,越來越多人開始想嘗試使用行動支付來付費。
然而相較於亞洲鄰近國家,台灣在行動支付的發展起步晚了許多,儘管行動支付開始遍地開花,但消費者多年來根深蒂固的行為還是難以改變。因此本研究希望瞭解哪些因素會影響到消費者採用行動支付的意圖,進而影響到採用行為,並探討台灣人之文化是否在這些因素和意圖的關係間具有調節影響。
透過研讀及整理過去文獻,本研究使用延伸整合科技接受模式(UTAUT2) 作為主架構解釋採用意圖,主要變數包括預期績效、社會影響、配合設施條件及享樂動機,並加入感知風險變數作為模型擴展觀察其負面影響,最後再觀察 Hofstede 的五個文化價值 (權力距離、個人/集體主義、不確定性規避、剛性/柔性氣質、長期/短期導向) 在其中是否具有調節效果,瞭解台灣文化的影響。本研究採網路問卷的方式進行調查,發放於批踢踢實業坊 (PTT) 以及 Facebook 社群平台並回收了 406 份樣本。
資料分析結果顯示,消費者對於使用行動支付的預期績效、社會影響、配合設施條件及享樂動機對使用行動支付的行為意圖有正向影響;消費者對於使用行動支付的感知風險對使用行動支付的行為意圖有負向影響;而文化價值的五個變數對主架構的調節影響均不顯著。
最後提出本研究的建議,期望能夠幫助行動支付業者瞭解影響台灣消費者使用行動支付的因素,針對這些影響因素提出更好的服務,協助推廣行動支付在台灣的發展。
As the increasing popularity of mobile devices and network, the things we can do on the mobile devices are more and more diverse. Almost everything in our daily life can be solved as long as the smart phone is around, and now, even payment can be mobile. With Apple Pay officially launched in Taiwan in March 2017, more and more people began to try the service of mobile payment.
However, compared to other countries in Asia, the progress of mobile payment in Taiwan has started a lot later. Although mobile payment has begun to be widespread, the entrenched behavior of Taiwan consumers is still difficult to change. Therefore, this research intends to investigate what factors will affect consumers’ intention to use mobile payment, and then influence the adoption behavior, and explore whether Taiwanese culture has a moderate influence in the relationship between these factors and intention.
By studying past researches, this research uses the Unified Theory of Acceptance and Use of Technology Model (UTAUT2) as the main framework to explain the adoption intention of mobile payment. The variables in the model include “performance expectancy”, “social influence”, “facilitating conditions”, and “hedonic motivation”, with “perceived risk” as the model extension to observe its negative influence. Moreover, this research explores whether Hofstede's five culture dimensions have moderate effects in the main framework. In this research, an online questionnaire was used to conduct surveys, 406 samples were collected on PTT and Facebook.
Data analysis results show that performance expectancy, social influence, facilitating conditions, and hedonic motivation have positive impact on the intention of mobile payments. And perceived risk has negative influence on the intention of mobile payments. The five moderating variables of the cultural value have no significant effect on the relationship between the relationship of five factors and the intention.
In conclusion, this research hopes to help mobile payment operators understand the factors that really affect Taiwan consumers' usage of mobile payments, and propose better services, finally help the development of mobile payments in Taiwan.
摘要.............................................................................................................................................i Abstract.......................................................................................................................................ii
致謝...........................................................................................................................................iv
目錄............................................................................................................................................ v
表目錄......................................................................................................................................vii
圖目錄.....................................................................................................................................viii
第一章、緒論............................................................................................................................ 1
1-1 研究背景與動機.............................................................................................................1
1-2 研究目的.........................................................................................................................3
1-3 研究流程.........................................................................................................................3
第二章、文獻探討.................................................................................................................... 5
2-1 行動支付.........................................................................................................................5
2-2 科技接受模式.................................................................................................................7
2-3 感知風險.......................................................................................................................10
2-4 Hofstede 文化價值........................................................................................................11
第三章、研究方法.................................................................................................................. 12
3-1 研究架構.......................................................................................................................12
3-2 研究假說.......................................................................................................................14
3-2 變數定義與衡量...........................................................................................................22
3-4 研究設計.......................................................................................................................23
第四章、資料分析與結果...................................................................................................... 28
4-1 前測分析.......................................................................................................................28
4-2 樣本結構分析...............................................................................................................32
4-3 信效度分析...................................................................................................................38
4-4 假說檢定.......................................................................................................................44
第五章、結論與建議.............................................................................................................. 51
5-1 研究結論.......................................................................................................................51
5-2 研究建議.......................................................................................................................54
5-3 研究限制.......................................................................................................................56
5-4 未來研究方向...............................................................................................................58
參考文獻.................................................................................................................................. 59
英文文獻 ..............................................................................................................................59
中文文獻 ..............................................................................................................................66
網路文獻 ..............................................................................................................................66
附錄一:前測問卷.................................................................................................................. 68
附錄二:正式問卷.................................................................................................................. 73
[1] Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision sciences, 30(2), 361-391.
[2] Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In Action control (pp. 11-39): Springer.
[3] Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
[4] Baptista, G., & Oliveira, T. (2015). Understanding mobile banking: The unified theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50, 418-430.
[5] Bauer, R. A. (1960). Consumer behavior as risk taking. Paper presented at the Proceedings of the 43rd National Conference of the American Marketing Assocation, June 15, 16, 17, Chicago, Illinois, 1960.
[6] Bond, R., & Smith, P. B. (1996). Culture and conformity: A meta-analysis of studies using Asch's (1952b, 1956) line judgment task. Psychological bulletin, 119(1), 111.
[7] Brown, I., Cajee, Z., Davies, D., & Stroebel, S. (2003). Cell phone banking: predictors of adoption in South Africa—an exploratory study. International journal of information management, 23(5), 381-394.
[8] Brown, S. A., & Venkatesh, V. (2005). Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS quarterly, 399-426.
[9] Chandra, S., Srivastava, S. C., & Theng, Y.-L. (2010). Evaluating the role of trust in consumer adoption of mobile payment systems: An empirical analysis. CAIS, 27(29), 27.
[10] Chen, K.-Y., & Chang, M.-L. (2013). User acceptance of ‘near field communication’mobile phone service: an investigation based on the ‘unified theory of acceptance and use of technology’model. The Service Industries Journal, 33(6), 609- 623.
[11] Chen, L.-d. (2008). A model of consumer acceptance of mobile payment. International Journal of Mobile Communications, 6(1), 32-52.
[12] Cox, D. F., & Rich, S. U. (1964). Perceived risk and consumer decision-making: The case of telephone shopping. Journal of marketing research, 32-39.
[13] Csikszentmihalyi, M. (1990). Flow. The Psychology of Optimal Experience. New York (HarperPerennial) 1990.
[14] Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
[15] Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of applied social psychology, 22(14), 1111- 1132.
[16] Dimitriadis, S., & Kyrezis, N. (2011). The effect of trust, channel technology, and transaction type on the adoption of self-service bank channels. The Service Industries Journal, 31(8), 1293-1310.
[17] Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers' product evaluations. Journal of marketing research, 307-319.
[18] Dowling, G. R., & Staelin, R. (1994). A model of perceived risk and intended risk- handling activity. Journal of consumer research, 21(1), 119-134.
[19] Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474.
[20] Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.
[21] Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50.
[22] Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis. In (6 ed.): New Jersey: Prentice Hall.
[23] Hofstede, G. (1980). Culture and organizations. International Studies of Management & Organization, 10(4), 15-41.
[24] Hofstede, G. (1984). Culture's consequences: International differences in work-related values (Vol. 5): sage.
[25] Hofstede, G. (1994). The business of international business is culture. International business review, 3(1), 1-14.
[26] Hofstede, G. (1998). Attitudes, values and organizational culture: Disentangling the concepts. Organization studies, 19(3), 477-493.
[27] Hofstede, G. (2011). Dimensionalizing cultures: The Hofstede model in context. Online readings in psychology and culture, 2(1), 8.
[28] Hofstede, G., & Bond, M. H. (1988). The Confucius connection: From cultural roots to economic growth. Organizational dynamics, 16(4), 5-21.
[29] Hongxia, P., Xianhao, X., & Weidan, L. (2011). Drivers and barriers in the acceptance of mobile payment in China. Paper presented at the E-Business and E-Government (ICEE), 2011 International Conference on.
[30] Huang, C.-Y., Kao, Y.-S., Wu, M.-J., & Tzeng, G.-H. (2013). Deriving factors influencing the acceptance of Pad Phones by using the DNP based UTAUT2 framework. Paper presented at the Technology Management in the IT-Driven Services (PICMET), 2013 Proceedings of PICMET'13:.
[31] Hussain Chandio, F., Irani, Z., Abbasi, M. S., & Nizamani, H. A. (2013). Acceptance of online banking information systems: an empirical case in a developing economy. Behaviour & Information Technology, 32(7), 668-680.
[32] Jordan, J. V., & Surrey, J. L. (1986). The self-in-relation: Empathy and the mother- daughter relationship.
[33] Keramati, A., Taeb, R., Larijani, A. M., & Mojir, N. (2012). A combinative model of behavioural and technical factors affecting ‘Mobile’-payment services adoption: an empirical study. The Service Industries Journal, 32(9), 1489-1504.
[34] Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.
[35] Kim, S. S., & Malhotra, N. K. (2005). Predicting system usage from intention and past use: scale issues in the predictors. Decision sciences, 36(1), 187-196.
[36] Koenig-Lewis, N., Marquet, M., Palmer, A., & Zhao, A. L. (2015). Enjoyment and social influence: predicting mobile payment adoption. The Service Industries Journal, 35(10), 537-554.
[37] Koenig-Lewis, N., Palmer, A., & Moll, A. (2010). Predicting young consumers' take up of mobile banking services. International journal of bank marketing, 28(5), 410-432.
[38] Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information systems research, 13(2), 205-223.
[39] Lapointe, L., & Rivard, S. (2005). A multilevel model of resistance to information technology implementation. MIS quarterly, 461-491.
[40] Lee, R., Murphy, J., & Swilley, E. (2009). The moderating influence of hedonic consumption in an extended theory of planned behaviour. The Service Industries Journal, 29(4), 539-555.
[41] Lim, N. (2003). Consumers’ perceived risk: sources versus consequences. Electronic Commerce Research and Applications, 2(3), 216-228.
[42] Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS quarterly, 705- 737.
[43] Lu, Y., Yang, S., Chau, P. Y., & Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & Management, 48(8), 393-403.
[44] Lunsford, D. A., & Burnett, M. S. (1992). Marketing product innovations to the elderly: Understanding the barriers to adoption. Journal of Consumer Marketing, 9(4), 53-62.
[45] Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision support systems, 49(2), 222-234.
[46] Mathieson, K., Peacock, E., & Chin, W. W. (2001). Extending the technology acceptance model: the influence of perceived user resources. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 32(3), 86-112.
[47] Mehra, R. (2010). Paying for goods and services using a mobile phone: Exploring mobile payment use and adoption. Auckland University of Technology,
[48] Miyazaki, A. D., & Fernandez, A. (2000). Internet privacy and security: An examination of online retailer disclosures. Journal of Public Policy & Marketing, 19(1), 54-61.
[49] Nunally, J. (1978). Psychometric. McGraw Hill, New YorkOCallaghan R, Kaufmann P, Konsynski (1992) Adoption correlates and share effects of electronic data interchange systems in marketing channels. J Mark, 56, 4556Parkhe.
[50] Nysveen, H., Pedersen, P. E., Thorbjørnsen, H., & Berthon, P. (2005). Mobilizing the brand: The effects of mobile services on brand relationships and main channel use. Journal of Service Research, 7(3), 257-276.
[51] Pedersen, P. E. (2005). Adoption of mobile Internet services: An exploratory study of mobile commerce early adopters. Journal of organizational computing and electronic commerce, 15(3), 203-222.
[52] Pookulangara, S., & Koesler, K. (2011). Cultural influence on consumers' usage of social networks and its' impact on online purchase intentions. Journal of Retailing and Consumer Services, 18(4), 348-354.
[53] Ram, S. (1987). A model of innovation resistance. ACR North American Advances.
[54] Ram, S., & Sheth, J. N. (1989). Consumer resistance to innovations: the marketing
problem and its solutions. Journal of Consumer Marketing, 6(2), 5-14.
[55] Refaat El Said, G., & Galal-Edeen, G. H. (2009). The role of culture in e-commerce use
for the Egyptian consumers. Business Process Management Journal, 15(1), 34-47.
[56] Riquelme, H. E., & Rios, R. E. (2010). The moderating effect of gender in the adoption
of mobile banking. International journal of bank marketing, 28(5), 328-341.
[57] Roberts, A. R. (1991). Contemporary perspectives on crisis intervention and prevention: Prentice Hall.
[58] Rouibah, K. (2008). Social usage of instant messaging by individuals outside the workplace in Kuwait: A structural equation model. Information Technology & People, 21(1), 34-68.
[59] Rouibah, K., & Abbas, H. (2011). Effect of personal innovativeness, attachment motivation and social norms on the acceptance of camera mobile phones: an empirical study in an Arab country. International Journal of Handheld Computing Research (IJHCR), 2(1), 72-93.
[60] Rouibah, K., Lowry, P. B., & Hwang, Y. (2016). The effects of perceived enjoyment and perceived risks on trust formation and intentions to use online payment systems: New perspectives from an Arab country. Electronic Commerce Research and Applications, 19, 33-43.
[61] Sheth, J. N. (1981). PSYCHOLOGY OF INNOVATION RESISTANCE: THE LESS DEVELOPED CONCEPT (LDC) IN DIFFUSION RESEARCH. In Research in Marketing, 273-382.
[62] Shin, D.-H. (2010). Modeling the interaction of users and mobile payment system: Conceptual framework. International Journal of Human-Computer Interaction, 26(10), 917-940.
[63] Slade, E., Williams, M., Dwivedi, Y., & Piercy, N. (2015). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223.
[64] Sorrentino, R. M., Bobocel, D. R., Gitta, M. Z., Olson, J. M., & Hewitt, E. C. (1988). Uncertainty orientation and persuasion: Individual differences in the effects of personal relevance on social judgments. Journal of Personality and social Psychology, 55(3), 357- 371.
[65] Sripalawat, J., Thongmak, M., & Ngramyarn, A. (2011). M-banking in metropolitan Bangkok and a comparison with other countries. Journal of computer information systems, 51(3), 67-76.
[66] Srite, M., & Karahanna, E. (2006). The role of espoused national cultural values in technology acceptance. MIS quarterly, 679-704.
[67] Srivastava, S. C., Chandra, S., & Theng, Y.-L. (2010). Evaluating the role of trust in consumer adoption of mobile payment systems: An empirical analysis. Communications of the Association for Information Systems, 27, 561-588.
[68] Straub, D., Loch, K., Evaristo, R., Karahanna, E., & Srite, M. (2002). Toward a theory- based measurement of culture. Human factors in information systems, 10(1), 61-65.
[69] Sun, Q., Cao, H., & You, J. (2010). Factors influencing the adoption of mobile service in China: An integration of TAM. JCP, 5(5), 799-806.
[70] Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
[71] Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
[72] Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
[73] Wu, J.-H., & Wang, S.-C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729.
[74] Yang, S., Lu, Y., Gupta, S., Cao, Y., & Zhang, R. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142.
[75] Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision support systems, 54(2), 1085-1091.
[76] 許傳勇. (2017). 以延伸科技接受模式探討消費者使用行動支付意圖. 東吳大學
[77] 黃敬玶. (2015). 運用 UTAUTII探討消費者對行動支付之接受程度. 國立臺北科技大學
[77] 鍾興祺. (2015). 以科技接受模式探討使用者採用 NFC 行動支付之意圖. 國立高雄應用科技大學
[78] 羅巧娜. (2017). 以科技接受模型探討消費者行動支付之使用意圖. 東吳大學
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔