(3.238.186.43) 您好!臺灣時間:2021/03/01 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:梁智彥
研究生(外文):Chih-Yen Liang
論文名稱:人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
論文名稱(外文):The Necklace for Human Posture Correction Combined with Image Recognition for Automatic Correction and Smart Phone for Receiving Warnings
指導教授:鍾鴻源鍾鴻源引用關係莊堯棠
指導教授(外文):Hung-Yuan ChungYau-Tarng Juang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:穿戴式裝置人體姿態辨識影像辨識物聯網
外文關鍵詞:Wearable DevicesHuman Body Posture RecognitionImage RecognitionInternet of Things
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文開發一套基於穿載式裝置與感測器技術之新穎人體姿勢矯正系統,其由智慧項鍊、智慧型手機、與個人電腦三個子系統構成。智慧項鍊內具陀螺儀及三軸加速度計,配戴於頸部後,藉由它收集的重力加速度值及經過分析後,能判斷人體上半身姿勢。當姿勢不良時,我們設計項鍊發送提醒訊息至手機。此時我們開發手機APP使其能夠接收項鍊端發出的訊息,設定項鍊標準值、提醒時間等參數值,及啟動個人電腦的影像校準功能。個人電腦採用深度攝影機的資料讀取,辨識人體骨架,找出關節參考點,透過參考點運算,直接傳訊到項鍊來校準其標準值。此提出的系統能夠達成:(1)無須穿著厚重及悶熱的矯正衣,達到自我修正姿勢;(2)透過影像達到快速校準項鍊裝置標準值;(3)項鍊、手機、個人電腦等,各界面溝通採無線傳輸,省去接線之複雜度,有效實現物聯網應用。
This paper proposes a novel human posture correction system based on wearable device and sensor technology. It consists of three subsystems: smart necklace, smart phone, and personal computer. The smart necklace is equipped with a gyroscope and a triaxial accelerometer. After being worn on the neck, the gravity acceleration value collected by it and after analysis can determine the upper body posture of the human body. When the posture is bad, we design the necklace to send a reminder message to the mobile phone. At this time, we developed the mobile phone APP so that it can receive the message sent from the necklace end, set the standard value in the necklace, the reminder time and other parameters, and start the image correction function of the personal computer. Personal computers use data from depth cameras to identify human skeletons and find joint reference points. Through reference point operations, the personal computer communicates directly to the smart necklace to correct its standard value. The research project is expected to achieve the following goals: (1) Don’t need to wear heavy corset to achieve self-correction pose. (2) Through the image recognition to quickly correct the standard value of the smart necklace. (3) Wisdom necklaces, mobile phones, personal computers, etc. All interfaces communicate wirelessly to each other to eliminate the complexity of wiring, effectively implement the Internet of things applications
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧與探討 2
1-3 主要貢獻 5
1-4 論文架構 5
第二章 軟硬體與系統架構 6
2-1 外部硬體 6
2-2 系統架構 9
2-3 三個子系統於初始化參數設定之互動 10
第三章 智慧項鍊 12
3-1 人體姿勢辨識 12
3-2 與手機通訊程式 22
第四章 個人電腦端 23
4-1 影像辨識人體骨架 23
4-2 校準方法 24
第五章 手機介面及通訊設計 25
5-1 通訊協定 25
5-2 手機介面 26
第六章 實驗結果與討論 29
6-1 智慧項鍊之三軸加速度數值與傾斜角度關係 30
6-2 影像自動校準智慧項鍊 32
6-3 手機操作項鍊裝置 38
第七章 結論與未來展望 44
7-1 結論 44
7-2 未來展望 44
參考文獻 45
[1] http://hcewiki.zcu.cz/hcewiki/index.php/Fineck
[2] Ramin Fallahzadeh, Mahdi Pedram, Hassan Ghasemzadeh, “SmartSock: A wearable platform for context-aware assessment of ankle edema, ” in Proc. IEEE Conf. Medicine and Biology Society (EMBC), Aug. 2016, pp. 6302-6306
[3] Francia Dauz, Emil Strumban, Roman Gr. Maev, “Wearable device for increasing the slow wave sleep stage by electrocutaneous stimulation,
” in Proc. IEEE Conf. Canadian Conference on Electrical and Computer Engineering (CCECE), Apr. 2017, pp. 1-3
[4] Prabha Sundaravadivel, Saraju P. Mohanty, Elias Kougianos, Venkata P. Yanambaka, Madhavi K. Ganapathiraju, “Smart-walk: An intelligent physiological monitoring system for smart families, ” in Proc. IEEE Conf. International Conference on Consumer Electronics (ICCE), Jan. 2018, pp. 1-4
[5] George Boateng, John A. Batsis, Patrick Proctor, Ryan Halter, David Kotz, “GeriActive: Wearable app for monitoring and encouraging physical activity among older adults, ” in Proc. IEEE Conf. International Conference on Wearable and Implantable Body Sensor Networks (BSN), Mar. 2018, pp. 46-49
[6] Juzheng Liu, Jing Chen, Hanjun Jiang, Wen Jia, Qingliang Lin, Zhihua Wang, “Activity Recognition in Wearable ECG Monitoring Aided by Accelerometer Data, ” in Proc. IEEE Conf. International Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1-4
[7] Alexis Martin, Jérémie Voix, “In-Ear Audio Wearable: Measurement of Heart and Breathing Rates for Health and Safety Monitoring, ” IEEE Journals & Magazines Transactions on Biomedical Engineering, Jun. 2018, pp. 1256-1263
[8] Grégoire Surrel, Amir Aminifar, Francisco Rincón, Srinivasan Murali, David Atienza, “Online Obstructive Sleep Apnea Detection on Medical Wearable Sensors, ” IEEE Early Access Articles Transactions on Biomedical Circuits and Systems, May 2018, pp. 1-12
[9] Yusuke Takei; Manabu Yoshida; Toshihiro Takeshita; Takeshi Kobayashi, “Wearable muscle training and monitoring device, ” in Proc. IEEE Conf. Micro Electro Mechanical Systems (MEMS), Jan. 2018, pp. 55-58
[10] Gopi Krishna Durbhaka, “Adaptive wearable smart fabric based on body posture and temperature, ” in Proc. IEEE Conf. International Conference on Advances in Computing, Communication, & Automation (ICACCA) (Fall), Sep. 2016, pp. 1-5
[11] Francesco Chinello, Claudio Pacchierotti, Monica Malvezzi, Domenico Prattichizzo, “A Three Revolute-Revolute-Spherical Wearable Fingertip Cutaneous Device for Stiffness Rendering, ” IEEE Journals & Magazines Transactions on Haptics, Jan. 2018, pp. 39-50
[12] Leonardo Meli, Irfan Hussain, Mirko Aurilio, Monica Malvezzi, Marcia K. O’Malley, Domenico Prattichizzo, “The hBracelet: A Wearable Haptic Device for the Distributed Mechanotactile Stimulation of the Upper Limb, ” IEEE Journals & Magazines Robotics and Automation Letters, Jul. 2018, pp. 2198-2205
[13] Artem A. Goncharenko, Lilia I. Voronova, Vyacheslav I. Voronov, Aleksey A. Ezhov, Dmitry V. Goryachev, ” in Proc. IEEE Conf. Systems of Signals Generating and Processing in the Field of on Board Communications, Mar. 2018, pp. 1-7
[14] Kailas Patil, Qaidjohar Jawadwala, Felix Che Shu, “Design and Construction of Electronic Aid for Visually Impaired People, ” IEEE Journals & Magazines Transactions on Human-Machine Systems, Apr. 2018, pp. 172-182
[15] Yufei Zhang, Bin Liu, Zhiqiang Liu, “WristMouse: Wearable mouse controller based on pressure sensors, ” in Proc. IEEE Conf. International Conference on Wearable and Implantable Body Sensor Networks (BSN), Mar. 2018 ,pp. 177-180
[16] Tuan Nguyen Gia, Mingzhe Jiang, Victor Kathan Sarker, Amir M. Rahmani. Tomi Westerlund, Pasi Liljeberg, Hannu Tenhunen, “Low-cost fog-assisted health-care IoT system with energy-efficient sensor nodes, “in Proc. IEEE Conf. International Wireless Communications and Mobile Computing Conference (IWCMC), Jun. 2017, pp. 1765-1770
[17] Y. Yang and D. Ramanan, “Articulated human detection with flexible mixtures of parts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,no. 12, pp. 2878-2890, Dec. 2013.
[18] A. Toshev and C. Szegedy, “DeepPose: Human pose estimation via deep neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,Jun. 2014, pp. 1653-1660.
[19] J. Shotton et al., “Real-time human pose recognition in parts from single depth images,” Commun. ACM, vol. 56, no. 1, pp. 116-124, Jan. 2013.
[20] M. Dantone, J. Gall, C. Leistner, and L. Van Gool, ”Human pose estimation using body parts dependent joint regressors,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 3041-3048.
[21] F.Wang and Y. Li, “Beyond physical connections: Tree models in human pose estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 596-603.
[22] Yu Huang, T. S. Huang, “Huang, Model-based human body tracking,” IEEE Conference Publications on Pages: 552-555 vol.1,2002.
[23] W. Yang, Y. Wang, and G. Mori, “Recognizing human actions from still images with latent poses,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 2030–2037.
[24] S. Johnson and M. Everingham, “Clustered pose and nonlinear appearance models for human pose estimation,” in Proc. BMVC, 2010, vol. 2. no. 4.
[25] Y. Wang, D. Tran, and Z. Liao, “Learning hierarchical poselets for human parsing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2011, pp. 1705-1712.
[26] L. Zhu, Y. Chen, A. Yuille, and W. Freeman, “Latent hierarchical structural learning for object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2010, pp. 1062-1069.
[27] H. Jiang and D. R. Martin, “Global pose estimation using non-tree models,” in Proc. IEEE Conf. Comput. Vis.Pattern Recognit. (CVPR), Jun. 2008, pp. 1-8.
[28] L. Sigal and M. J. Black, “:Measure locally, reason globally: Occlusionsensitive articulated pose estimation,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2. Jun. 2006, pp. 2041-2048.
[29] Y. Tian, C. L. Zitnick, and S. G. Narasimhan, “Exploring the spatial hierarchy of mixture models for human pose estimation,” in Proc. Eur. Conf. Comput. Vis., Oct. 2012, pp. 256-269.
[30] L. Karlinsky and S. Ullman, ”Using linking features in learning nonparametric part models,” in Proc. Eur. Conf. Comput. Vis, Oct. 2012, pp. 326-339.
[31] Nurliyana Muty, Zati Azizul, “Detecting Arm Flapping in Children with Autism Spectrum Disorder Using Human Pose Estimation and Skeletal Representation Algorithms, ”
[32] Microsoft Corp, Kinect, http://www.xboxkinection.com
[33] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio,Richard Moore, Alex Kipman, Andrew Blake, ”Real-Time Human Pose Recognition in Parts from Single Depth Images, ”In Microsoft Research Cambridge & Xbox Incubation,2010
[34] Y. Amit, D. Geman, “Shape quantization and recognition with randomized trees, ” Neural Computation, 9(7) 1997, pp. 1545–1588
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔