(3.235.108.188) 您好!臺灣時間:2021/02/25 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭語璇
研究生(外文):Yu-Hsuan Kuo
論文名稱:以類比電路行為模型提升電路壽命分析的效率
論文名稱(外文):Efficient Lifetime Yield Analysis with Analog Behavioral Models
指導教授:劉建男劉建男引用關係
指導教授(外文):Chien-Nan Liu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:63
中文關鍵詞:類比電路分析行為模型電路老化可靠度改善
外文關鍵詞:Analog Circuit AnalysisBehavioral ModelCircuit AgingReliability Improvement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著製程技術的進步,積體電路(IC)設計進入了深次微米(deep-submicron)技術時代,當元件尺寸(device size)越來越小,製程變異(process variation)和電路老化(circuit aging)現象對於電路效能的影響也越來越顯著,甚至威脅到電路的可靠度,對於敏感的類比電路來說更為嚴重。因此,若是可以在設計初期,就將可能造成參數變異的現象考慮進來,事先預防對電路效能的不良影響,就可以大幅降低重新設計的成本,提高電路的良率。為了評估製程變異、元件老化等參數變化所造成的效能飄移,最常見的方法是做蒙地卡羅模擬(Monte Carlo Simulation),然而,電路老化效應是一個漸進式的過程,若要將此一同加進來做分析,相當於每隔一段時間就要做一次蒙地卡羅分析,雖然可以達到較高的精準度,但模擬所需的時間和代價卻非常高昂。
為了加速老化分析的效率,先前的研究[7]提出了基於戴爾他模型的漸進式模擬技術,還提出了一種動態的採樣技術,進一步減少模擬的次數。此外,在文獻中,行為模型除了協助設計者進行功能驗證外,對於其他類型的驗證,也都有很好的加速效果,被廣泛地用於加速電路的模擬。因此,本論文將老化現象加入行為模型中,加速老化分析的過程,再結合漸進式模擬技術,將它從電晶體層級提升到行為層級中,來提升壽命良率分析的效率。由實驗結果觀察可知,本論文所提出的方法確實有效提升了電路壽命良率分析的效率,也能同時保有其原本的精準度,是ㄧ個兼顧效能與準確度的好方法。
With the shrinking device size in deep-submicron era, the parameter shift due to process variation and aging effects has an increasing impact on the circuit yield and reliability, especially for sensitive analog circuits. If we can consider the impact of device parameter variation for the circuit performance at early design stages, it can help to significantly reduce the re-design cost and increase circuit yield. To assess the effective drift by the process variation, Monte Carlo (MC) analysis is often used. Since aging process is often a gradual change, we have to analyze the circuits repeatedly after a period of time. For modern large circuits, performing MC simulation repeatedly during aging analysis is almost infeasible due to the high complexity.
In order to improve the efficiency of aging analysis while keeping high accuracy, an incremental simulation technique is proposed in [7] based on delta circuit models. A dynamic aging sampling technique is also proposed to further reduce the number of simulations. In the literature, analog behavioral models are widely used to speed up circuit simulation. In this thesis, we try to combine delta models and behavioral models in aging analysis and develop proper behavioral models to simulate the degraded performance distribution instead of transistor-level simulation. After promoted to behavioral level, it is possible to have more improvements on the efficiency of lifetime yield analysis. As demonstrated in the experimental results, the proposed approach is indeed an effective way to improve the efficiency of lifetime yield analysis while keeping estimation accuracy.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章、緒論 1
1- 1 研究動機 1
1- 2 相關研究 6
1-2-1 Berkeley Reliability Tools (BERT) 6
1-2-2 RelXpert 7
1-2-3 ELDO 8
1-2-4 以行為模型提升電路老化分析 9
1- 3 論文結構 10
第二章、背景知識 11
2- 1 考慮參數變異的行為模型 11
2- 2 電路老化成因 14
2-2-1 絕緣崩潰(Dielectric Breakdown) 15
2-2-2 電子遷移(Electromigration) 15
2-2-3 熱載子注入(Hot Carrier Injection) 16
2-2-4 負偏壓溫度不穩定性(NBTI) 17
2-2-5 電路老化模型 17
2- 3 壽命良率分析之概念 19
第三章、電路壽命分析方法 21
3- 1 戴爾他電路模型(Delta Circuit Models) 21
3- 2 電路老化的漸進式分析方法 24
3-2-1 漸進式分析概念 24
3-2-2 動態取樣分析概念 25
3-2-3 漸進式電路老化分析之流程圖 26
3- 3 建立考慮老化現象的類比行為模型 28
3-3-1 變動的元件參數 28
3-3-2 二階NMOS放大器 29
3-3-3 帶差參考電壓電路 33
3- 4 結合漸進式分析技術與行為模型的流程 38
第四章、實驗結果與分析 40
4- 1 實驗環境設定 40
4- 2 二階NMOS放大器 (Second-order NMOS Amplifier) 41
4- 3 帶差參考電壓電路(Voltage Bandgap Reference) 43
第五章、結論 45
參考文獻 46
[1] G. E. Moore, “Cramming More Components Onto Integrated Circuits”, Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, Jan. 1998.
[2] Keyes, R. W, “The impact of Moore's Law”, IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 25-27, Sept. 2006.
[3] Moore's Law, The Future-Technology & Research at Intel [Online]. Available: http://www.intel.com/technology/mooreslaw/index.htm
[4] R. A. Rutenbar, “Emerging Tools for Analog & Mixed-Signal: The Role of Synthesis and Analog Intellectual Property”, Master Course, Design Automation and Test in Europe (DATE), 2003.
[5] Y.-L. Chen, W. Wu, C.-N. J. Liu, and L. He, “Incremental Latin Hypercube Sampling for Lifetime Stochastic Behavioral Modeling of Analog Circuits”, Asia and South Pacific Design Automation Conference(ASP-DAC), pp. 556-561, Jan. 2015.
[6] A. Doucet, N.De. Freitas, and N. Gordon, “An introduction to sequential Monte Carlo methods”, Sequential Monte Carlo methods in practice., Springer, New York, NY, 2001.
[7] S.-R. He, C. Q. Nguyen, Y.-H. Kuo, and C.-N. J. Liu, “An Incremental Aging Analysis Method Based on Delta Circuit Simulation Technique”, IEEE Asian Test Symposium(ATS), pp. 64-69, Nov. 2017.
[8] C.-C. Kuo, M.-J. Lee, C.-N. J. Liu, and C.-J. Huang, “Fast Statistical Analysis of Process Variation Effects Using Accurate PLL Behavioral Models”, IEEE Transactions on Circuits and Systems I : Regular Papers, vol. 56, no. 6, pp. 1160-1172, Jun. 2009.
[9] C.-C. Kuo and C.-N. J. Liu, “Fast and Accurate Analysis of Supply Noise Effects in PLL with Noise Interactions”, IEEE Transactions on Circuits and Systems I, vol. 57, no. 1, pp. 44-52, Jan. 2010.
[10] R.T. Tu, E. Rosenbaum, W.Y. Chan, C.C. Li, E. Minami, K. Quader, P.K. Ko and C. Hu, “Berkeley Reliability Tools-BERT”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 10, pp. 1524-1534, Oct. 1993.
[11] Virtuoso relxpert reliability simulator user guide, Product version 7.0.1, June. 2008.
[12] Cadence White paper. Reliability Simulation in Integrated Circuit Design. http://www.cadence.com/
[13] Medhat Karam, Wael Fikry, Hani Ragai. Implementation of Hot-Carrier Reliability Simulation in Eldo. Mentor Graphics Deep Submicron Technical Publication, Sep. 2000.
[14] W. Wu, Y. Shan, X. Chen, Y. Wang, and H. Yang, “FPGA Accelerated Parallel Sparse Matrix Factorization for Circuit Simulations”, in Reconfigurable Computing: Architectures, Tools and Applications, vol. 6578, pp. 302-315, Springer, 2011.
[15] W. Wu, F. Gong, R. Krishnan, L. He, and H. Yu, “Exploiting Parallelism by Data Dependency Elimination: A Case Study of Circuit Simulation Algorithms”, IEEE Design&Test of Computers, vol. 30, no. 1, pp. 26–35, Feb 2013.
[16] F. Marc, B. Mongellaz, C. Bestory, H. Levi and Y. Danto, “Improvement of Aging Simulation of Electronic Circuits Using Behavioral Modeling”, IEEE Transactions on Device and Materials Reliability, vol. 6, no. 2, pp. 228-234, Jun. 2006.
[17] G. Gielen, P. De Wit, E. Maricau, J. Loeckx, J. Mart´ın-Mart´ınez, B. Kaczer, G. Groeseneken, R. Rodriguez and M. Nafria, “Emerging Yield and Reliability Challenges in Nanometer CMOS Technologies”, Design, Automation and Test in Europe, pp. 1322-1327, Mar. 2008.
[18] J.E. Chung, K.N. Quader, C.G. Sodini, P.K. Ko, and C. Hu, “The Effects of Hot-Electron Degradation on Analog MOSFET Performance”, International Technical Digest on Electron Devices, pp. 553-557, Dec. 1990.
[19] X. Pan and H. Graeb, “Lifetime Yield Optimization of Analog Circuits Considering Process Variations and Parameter Degradations”, Advances in Analog Circuits, InTech, Feb. 2011.
[20] H.-J. Lee and K.-K. Kim, “Analysis of Time Dependent Dielectric Breakdown in Nanoscale CMOS Circuit”, International SoC Design Conference(ISOCC), pp. 440-443, Nov. 2011.
[21] J. Black, “Electromigration—A Brief Burvey and Some Recent Results”, IEEE Transactions on Electron Devices, vol. 16, no. 4, pp. 338-347, Apr. 1969.
[22] W. Wang, V. Reddy, A.T. Krishnan, R. Vattikonda, S. Krishnan and Y. Cao, “Compact Modeling and Simulation of Circuit Reliability for 65nm CMOS Technology”, IEEE Transactions on Device and Materials Reliability, vol.7, no. 4, pp. 509-517, 2007.
[23] X. Pan and H. Graeb, “Degradation-Aware Analog Design Flow for Lifetime Yield Analysis and Optimization”, IEEE International Conference on Electronics, Circuits and Systems(ICECS), 2009.
[24] K.O. Kundert, The designer’s guide to SPICE and SPECTRE, Norwell, Massachusetts: Kluwer, pp. 129-249, 1995.
[25] “HSPICE User Guide”, Version A-2008.03, Synopsys, Mar. 2008.
[26] T-Y. Zhou, H. Liu, D. Zhou, and T. Tarim, “A Fast Analog Circuit Analysis Algorithm for Design Modification and Verification”, IEEE Trans. on Computer-Aided Design, vol. 30, no. 2, pp. 308-313, Feb. 2011
[27] NIMO Group, “Predictive technology model”, ASU, http://ptm.asu.edu/.
[28] A. Lyon, ”Why are Normal Distributions Normal?”, The British Journal for the Philosophy of Science, vol. 65, no. 3, pp. 621-649, Sep. 2014,
[29] D. Neamen, “Basic FET amplifiers”, in Microelectronics Circuit Analysis and Design, 4th edition, pp. 205-284, McGraw-Hill, 2009.
[30] R.J. Baker, “Voltage references”, in CMOS Circuit Design, Layout and Simulation, 2nd edition, pp. 745-772, Wiley Interscience, 2004.
電子全文 電子全文(網際網路公開日期:20210831)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔