跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 11:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴煜凱
研究生(外文):Yu-Kai Lai
論文名稱:應用於三相不平衡負載電流補償之智慧型太陽光電發電系統
論文名稱(外文):Intelligent Photovoltaic Power System with Three-Phase Unbalanced Load Current Compensation
指導教授:林法正林法正引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:144
中文關鍵詞:太陽光電發電系統交錯式直流至直流轉換器三階層中性點箝位變流器智慧型變流器不平衡電流補償補償模糊類神經網路非對稱歸屬函數
相關次數:
  • 被引用被引用:3
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個在不增加主動式電力濾波器的情況下補償三相不平衡電流之智慧型雙級太陽光電發電系統。太陽光電發電系統由一個交錯式直流至直流轉換器與一個三階層中性點箝位變流器所組成。此外,太陽光電發電系統具有智慧型變流器功能,其中太陽光電變流器的輸出實、虛功是根據電力法規所要求的功率因數所預先設定的。在所提出的方法中,透過低通濾波器獲得 軸補償電流以補償饋入電網的三相不平衡電流。此外,為了提高太陽光電發電系統在不平衡負載變動情況下的直流鏈電壓的控制性能,本文提出了一種線上學習的非對稱補償模糊類神經網路,用來取代傳統的比例積分控制器用於直流鏈電壓控制。在所提出的非對稱補償模糊類神經網路中,將模糊系統的悲觀和樂觀操作互相結合產生的補償參數加入到補償模糊類神經網路中,並且採用非對稱型高斯函數為非對稱歸屬函數以增加訓練維度。另外,所提出的太陽光電發電系統的控制器,透過使用數位訊號處理器的兩個控制平台來實現。最後,從模擬與實驗結果可以看出在三相不平衡負載下,補償饋入電網之三相不平衡電流的優良性能。
A improved method is proposed to compensate the three-phase unbalanced currents of power grid under three-phase unbalanced load for a two-stage photovoltaic (PV) power system without the augmentation of active power filter (APF). The PV power system is composed of an interleaved DC/DC converter and a three-level neutral-point clamped (NPC) inverter. Moreover, the PV power system possesses the smart inverter function, in which the output active and reactive powers of the PV inverter are predetermined by a power factor according to grid codes of the utilities. In the proposed method, -axis compensation currents are obtained through low pass filters (LPFs) to compensate the three-phase unbalanced currents of power grid. Furthermore, in order to improve the control performance of the DC bus voltage of the PV power system under unbalanced load variation condition, an online trained compensatory neural fuzzy network with an asymmetric membership function (CFNN-AMF) is proposed to replace the traditional proportional-integral (PI) controller for the DC bus voltage control. In the proposed CFNN-AMF, the compensatory parameter to integrate pessimistic and optimistic operations of fuzzy systems is embedded in the CFNN. In addition, the dimensions of the Gaussian membership functions are directly extended to AMFs. Additionally, the proposed controllers of the PV power system are implemented by two control platforms using floating-point digital signal processor (DSP). Finally, excellent compensation performance for the three-phase currents of power grid under three-phase unbalanced load can be achieved from the experimental results.
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XV
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 本文貢獻 5
1.4 論文大綱 6
第二章 智慧型太陽光電發電系統介紹 7
2.1 簡介 7
2.2 太陽能電池特性 7
2.3 太陽能電池最大功率點追蹤 11
2.3.1 擾動觀察法(Perturb and Observe Method) 11
2.3.2 增量電導法(Incremental Conductance Method) 12
2.4 兩級式電路架構 14
2.4.1 交錯式直流至直流轉換器 16
2.4.2 三階層中性點箝位變流器 18
2.4.3 三階層中性點箝位變流器控制原理 25
2.4.4 鎖相迴路設計 27
2.5 變流器之實虛功控制與電流控制 28
2.6 不平衡負載電流補償之架構與控制策略 29
2.6.1 直流鏈電壓控制 29
2.6.2 補償電流計算 30
第三章 智慧型太陽光電發電系統之雙模式控制策略 31
3.1 前言 31
3.2 Mode I:最大功率點追蹤模式 33
3.3 Mode II:智慧型變流器模式 37
第四章 非對稱歸屬函數之補償模糊類神經網路 39
4.1 簡介 39
4.2 非對稱歸屬函數之補償模糊類神經網路架構 39
4.3 非對稱歸屬函數之補償模糊類神經網路線上學習法則 42
4.4 非對稱歸屬函數之補償模糊類神經網路收斂性分析 45
第五章 硬體設備與規劃 49
5.1 硬體規劃 49
5.2 數位訊號處理器與周邊電路 50
5.2.1 TMS320F28335控制電路板 50
5.2.2 市電電壓偵測電路 50
5.2.3 直流電壓偵測電路 51
5.2.4 電流感測電路 52
5.3 硬體設備 53
5.3.1 可程控直流電源供應器(具太陽能電池陣列模擬功能) 53
5.3.2 三相交流電源供應器 54
5.3.3 可變動之三相不平衡負載 56
5.3.4 三相變壓器 57
第六章 模擬與實驗結果 58
6.1 前言 58
6.2 模擬結果 58
6.3 實驗結果 86
第七章 結論與未來研究方向 116
7.1 結論 116
7.2 未來研究方向 117
參考文獻 118
作者簡歷 124
[1] 行政院,綠能科技產業創新推動方案,2016。
[2] 行政院,前瞻基礎建設計畫,2017。
[3] 台灣電力股份有限公司,https://www.taipower.com.tw。
[4] 葉貞君、楊宗穎、沈柏丞等,推動再生能源面臨的議題,臺灣能源期刊,第三卷,第四期,2016。
[5] G. Mokhtari, A. Ghosh, G. Nourbakhsh, and G. Ledwich, “Smart robust resources control in LV network to deal with voltage rise issue,” IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 1043–1050, Oct. 2013.
[6] S. Weckx and J. Driesen,“Optimal local reactive power control by PV inverters,” IEEE Trans. Sustainable Energy, vol. 7, no. 4, pp. 1624-1633, Oct. 2016.
[7] A. Y. Elrayyah, M. Z. C. Wanik, and A. Bouselham, “Simplified approach to analyze voltage rise in LV systems with PV installations using equivalent power systems diagrams,” IEEE Trans. Power Deliv., vol. 32, no. 4, pp.2140-2149, Aug. 2017.
[8] J. Miret, L. Garcia de Vicuna, M. Castilla, J. Matas, and J. Guerrero, “Design of an analog quasi-steady-state nonlinear current-mode controller for single-phase active power filter,” IEEE Trans. Ind. Electron., vol. 56, no. 12, pp. 4872-4881, Dec. 2009.
[9] P. Lohia, M. K. Mishra, K. Karthikeyan, and K. Vasudevan, “A minimally switched control algorithm for three-phase four-leg VSI topology to compensate unbalanced and nonlinear load,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1935-1944, Jul. 2008.
[10] B. Kedjar and K. Al-Haddad, “DSP-based implementation of an LQR with integral action for a three-phase three-wire shunt active power filter,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 2821-2828, Aug. 2009.
[11] P. Acuna, L. Moran, M. Rivera, J. Dixon, and J. Rodriguez, “Improved active power filter performance for renewable power generation systems,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 687-694, Feb. 2014.
[12] R. R. Pereira, C. H. da Silva, L. E. Borges da Silva, G. Lambert-Torres, and J. O. P. Pinto, “New strategies for application of adaptive filters in active power filters,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1136-1141, May/Jun. 2011.
[13] M. A. Mulla, C. Rajagopalan, and A. Chowdhury, “Compensation of three-phase diode rectifier with capacitive filter working under unbalanced supply conditions using series hybrid active power filter,” IET Power Electron., vol. 7, no. 6, pp. 1566-1577, Jun. 2014.
[14] M. Cirrincione, M. Pucci, G. Vitale, and A. Miraoui, “Current harmonic compensation by a single-phase shunt active power filter controlled by adaptive neural filtering,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3128-3143, Aug. 2009.
[15] K. Jyotheeswara Reddy and N. Sudhakar, “High voltage gain interleaved boost converter with neural network based MPPT controller for fuel cell based electric vehicle applications,” IEEE Access, vol. 6, pp. 3899-3908, 2018
[16] S. Dusmez, A. Hasanzadeh, and A. Khaligh, “Comparative analysis of bidirectional three-level dc–dc converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3305-3315, May. 2015.
[17] Y. Chen, C. Tang, and Y. Chen, “PV power system with multi-mode operation and low-voltage ride-through capability,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7524-7533, Dec. 2015.
[18] H. Kosai, J. Scofield, S. McNeal, B. Jordan, and B. Ray, “Design and performance evaluation of a 200 °C interleaved boost converter,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1691-1699, Apr. 2013.
[19] O. Vodyakho and C. C. Mi, “Three-level inverter-based shunt active power filter in three-phase three-wire and four-wire Systems,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1350-1363, May. 2009.
[20] O. Vodyakho and T. Kim, “Shunt active filter based on three-level inverter for three-phase four-wire systems,” IET Power Electron, vol. 2, no. 3, pp. 216-226, Apr. 2009.
[21] A. Choudhury, P. Pillay, and S. S. Williamson, “Discontinuous hybrid- PWM-based DC-link voltage balancing algorithm for a three-level neutral-point-clamped (NPC) traction inverter drive,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3071-3082, Jul./Aug. 2016.
[22] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control system,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3872-3879, Oct. 2009.
[23] F. J. Lin, L. T. Teng, P. H. Shieh, and Y. F. Li, “Intelligent controlledwind- turbine emulator and induction-generator system using RBFN,” Proc. Inst. Elect. Eng.-Elect. Power Appl., vol. 153, no. 4, pp. 608-618, Jul. 2006.
[24] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, Aug. 2012.
[25] W. Yu and X. O. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, Jun. 2004.
[26] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezoactuator,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 53, no. 9, pp. 1649-1661, Sep. 2006.
[27] Y. Q. Zhang and A. Kandel, “Compensatory neurofuzzy systems with fast learning algorithms,” IEEE Trans. Neural Networks, vol. 9, pp. 83-105, Feb. 1998.
[28] H. Seker, D. E. Evans, N. Aydin, and E. Yazgan, “Compensatory fuzzy neural networks-based intelligent detection of abnormal neonatal cerebral Doppler ultrasound waveforms,” IEEE Trans. Inf. Technol. Biomed., vol. 5, no. 3, pp. 187-194, Sep. 2001.
[29] C. J. Lin and C. H. Chen, “Identification and prediction using recurrent compensatory neuro-fuzzy systems,” Fuzzy Sets Syst., vol. 150, no. 2, pp. 307-330, 2005.
[30] F. J. Lin, Y. C. Hung, J. C. Hwang, and M. T. Tsai, “Fault-tolerant control of a sixphase motor drive system using a Takagi-Sugeno-Kang type fuzzy neural network with asymmetric membership function,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3557-3572, Jul. 2013.
[31] Y. C. Hung, F. J. Lin, J. C. Hwang, J. K. Chang, and K. C. Ruan, “Wavelet fuzzy neural network with asymmetric membership function controller for electric power steering system via improved differential evolution,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2350-2362, Apr. 2015.
[32] 台灣電力股份有限公司,再生能源發電系統併聯技術要點修正草案,2017。
[33] 楊柏輝,應用單級轉換器之太陽能光電系統實虛功控制策略,國立中央大學,碩士論文,2016年六月。
[34] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, “An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3627-3638, Aug. 2012.
[35] S. K. Kollimalla and M. K. Mishra, “A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance,” IEEE Trans. Energy Convers., vol. 29, no. 3, pp. 602-610, Sep. 2014.
[36] R. A. Mastromauro, M. Liserre, and A. Dell’Aquila, “Control issues in single-stage photovoltaic systems: MPPT, current and voltage control,” IEEE Trans. Ind. Inform., vol. 8, no. 2, pp. 241-254, Apr. 2012.
[37] 蔡居甫,應用於儲能系統之智慧型風場功率平滑化之控制,國立中央大學,碩士論文,2015年六月。
[38] J. Sun, “Dynamics and Control of Switched Electronic Systems,” Springer, ch. 2, sec. 3, pp. 48-53, 2012.
[39] M. N. Kokate and P. V. Kapoor, “Comparison of simulation results three Level and five level H-bridge inverter and hardware implementation of single leg H-Bridge three level inverter,” Int. J. Innov. Res. Stud., vol. 2, no. 4, pp. 389-403, Apr. 2013.
[40] 柯廷翰,考慮配電系統三相故障之具低電壓穿越能力之智慧型太陽光電系統,國立中央大學,碩士論文,2013年六月。
[41] A. G. Cerrada, O. P. Ardila, V. F. Batlle, P. R. Sánchez, and P. G. González, “Application of a repetitive controller for a three-phase active power filter,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 237-246, Jan. 2007.
[42] A. K. Panda and R. Patel, “Adaptive hysteresis and fuzzy logic controlledbased shunt active power filter resistant to shoot-through phenomenon,” IET Power Electron., vol. 8, no. 10, pp. 1963-1977, 2015.
[43] K. H. Tan, F. J. Lin, and J. H. Chen, “A three-phase four-leg inverter-based active power filter for unbalanced current compensation using a Petri probabilistic fuzzy neural network,” Energies, vol. 10, Dec. 2017.
[44] F. J. Lin, I. F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153-167, Jul. 2016.
[45] 使用手冊,可程控直流電源供應器(具太陽能電池陣列模擬) 62000H系列使用手冊,Chroma,2012。
[46] User Manual, User’s Manual PCR-LE series, KIKUSUI, Feb. 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊