(18.210.12.229) 您好!臺灣時間:2021/02/26 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫弘憲
研究生(外文):Hung-Hsien Sun
論文名稱:大型風力機風況入力及支撐結構應力分析
論文名稱(外文):The Analysis of the Wind Load and the Support Structure Stress for Large Wind Turbine
指導教授:黃俊仁黃俊仁引用關係
指導教授(外文):Jiun-Ren Hwang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:115
中文關鍵詞:風力機塔架流場分析應力分析螺栓分析
外文關鍵詞:Wind Turbine TowerFlow Field AnalysisStress AnalysisBolt Stress Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
能源為目前最重要的議題之一,風力發電更是我國重要的綠能發電之一。風力機朝著大型化與發電容量更大的機型發展,伴隨而來的就是結構負載提升及運轉成本增加。
本研究針對2.0 MW大型風力機使用ANSYS Fluent軟體進行風況入力分析。先進行流場設定條件檢測及葉片模型節距角0°位置檢測。然後探討在正常發電及極限風速下的風力機受力狀況,並討論風切、紊流強度及轉向錯位等因素之影響,再使用ANSYS Workbench 15.0軟體,將流場分析的結果導入進行穩態、暫態應力分析和模態分析,觀察塔架應力分布情形,並取得各法蘭處截面之應力,進而得到螺栓最大應力。
研究結果顯示,可將葉片在迎風面產生最大投影面積時之位置設定為節距角0,並由風力機實際操作狀況得到驗證。紊流強度變大時,會增加風力機的總正向入力,且平均風速愈高時之增加程度愈大。轉向錯位對於側向入力的影響很大,在極限風速且風力機靜止(颱風)狀況下,轉向錯位在67.5時產生最大側向入力。應力分析方面,在正常操作情況下或IEC 61400-1規範中所要求的特定風速下,均不會造成風力機塔架的損壞。模態分析上,在正常發電額定轉速下並不會對塔架造成共振效應。螺栓應力分析方面,在螺紋根部有很大的集中應力,會造成局部的塑性變形,且螺栓截面應力與經驗公式所計算之值相符合。
Energy issue is one of the most important topics in Taiwan, and so is the wind power. The size of wind turbine is getting larger to satisfy the needs of electric energy, but it results in an increment of cost and external loads.
The wind-induced loads and stresses of Vestas V80-2MW wind turbine were analyzed. The author inspected the setting of inflow conditions first, and then investigated the wind-induced loads of the wind turbine under both normal power production and several extreme wind speeds. The influence of wind shear, turbulence intensity, and yaw misalignment were discussed. The results showed that the pitch angle of blade was at 0 position when the projected area of a blade was maximum. The wind-induced loads increased with turbulence intensity, and such increment of loads increased with mean wind speed. The yaw misalignment had an apparent effect on the lateral force acting on the tower. When the wind turbine was under extreme wind speed and parked, e.g., typhoon, the maximum lateral force occurred at 67.5 of yaw misalignment. With respect to the stress analysis of tower, the tower of wind turbine will not fail under normal power production or the specific wind speeds that were required in IEC 61400-1 standard. In modal analysis, the resonance of tower will not occur under normal power production with rated rotor speed. In stress analysis of bolt, the stress at bolt root was very high due to the effect of stress concentration, which resulted in local plastic deformation. The stress at the center of cross-section of bolt was identical to the value that was calculated by empirical formula.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 ix
表目錄 xiii
符號說明 xv
第一章、緒論 1
1-1研究背景與動機 1
1-2研究目的 4
1-3風力機簡介 5
1-3-1風力機原理 5
1-3-2 Vestas V80 風力機 5
1-4文獻回顧 7
1-4-1 IEC-61400-1設計規範 7
1-4-2 流場分析 7
1-4-3 塔架應力分析 8
1-4-4 風力機模態分析 9
1-4-5 風力機基座分析 9
1-4-6 螺栓應力分析 10
第二章、理論說明 11
2-1風條件 11
2-1-1風速分布 11
2-1-2 10分鐘平均風速 12
2-1-3風切係數 12
2-1-4紊流強度 13
2-1-5極端風況 13
2-1-6極端風-陣風 14
2-2負載 15
2-2-1設計工況 15
2-2-2慣性負載與重力負載 15
2-2-3氣動負載 16
2-2-4塔架負載 17
2-3有限元素理論 20
2-3-1前處理 20
2-3-2求解 20
2-3-3後處理 20
2-4螺栓預緊力 21
第三章、研究方法 23
3-1風力機型號及規格 24
3-1-1應變規感測器 28
3-2幾何模型建立 29
3-3風力機流場分析 31
3-4塔架應力分析 32
3-4-1 穩態分析 32
3-4-2 暫態分析 33
3-4-3 彈性基座之分析 33
3-5塔架模態分析 36
3-6螺栓應力分析 37
3-6-1螺栓預應力 37
3-6-2螺栓最大應力計算 38
3-6-3螺栓模型 38
第四章、結果與討論 41
4-1風力機模型驗證 41
4-2風力機流場分析 44
4-2-1流場尺寸大小檢測及分析模型確認 44
4-2-1-1高度之影響 44
4-2-1-2寬度之影響 45
4-2-1-3長度之影響 46
4-2-1-4流埸節點數量及風剖面之影響 46
4-2-1-5出/入風口數之影響 47
4-2-1-6迭代次數之影響 48
4-2-1-7分析模型確認 49
4-2-2正常發電時之入力 50
4-2-3極限風速時之入力 51
4-2-4不同紊流強度對塔架分力的影響 52
4-2-5 轉向錯位對風力機入力的影響 53
4-2-6陣風入力分析 55
4-2-7風力機方位角入力分析 56
4-3塔架穩態應力分析 59
4-3-1風力機正常運轉下之應力 59
4-3-2風力機極端風速下之應力 60
4-3-3葉片方位角的影響 62
4-3-4轉向錯位之影響 64
4-4塔架暫態應力分析 66
4-4-1風力機開機狀態 66
4-4-2風力機正常關機狀態 68
4-4-3風力機緊急關機狀態 69
4-4-4陣風對應力之影響 70
4-5風力機基座分析 71
4-6塔架模態分析 74
4-7螺栓應力分析 76
4-7-1經驗公式之螺栓應力 76
4-7-2 FEM分析 79
4-7-2-1正常發電下中下法蘭螺栓 79
4-7-2-2極限風速下中下法蘭螺栓 83
第五章、結論與未來研究方向 88
5-1結論 88
5-2未來研究方向 90
參考文獻 91
[1] “2016 年世界能源展望(WEO)--風力發電現況與未來發展”,楊珍鈐,2017。
[2] “風力發電十年發展計畫”,台灣電力公司,2002。
[3] “千架海陸風力機”,經濟部能源局,2011。
[4] “2016能源產業技術白皮書”,經濟部能源局,2016。
[5] “風力發電4年計畫”,經濟部能源局,2017。
[6] F. Lauha, S. Steve, S. Sgruti and Q. Limig, “Global Wind Report Annual Market Update 2015,” Global Wind Energy Council, 2015.
[7] 網路資料︰維基百科。取自https://zh.wikipedia.org/wiki/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0
[8] 網路資料︰台灣電力公司官方網站。取自http://www.taipower.com.tw/content/new_info/new_info-b31.aspx?LinkID=8
[9] “Wind turbines – Part 1: Design Requirements,” IEC 61400-1, International Electrotechnical Commission, 2014.
[10] 網路資料︰Vestas。取自www.vestas.com
[11] 葉泰和,“台灣風場評估方法”,新能源施工處, 358-378頁,2011。
[12] Y. K. Chen, and J. L. Chen, “Changhua Coastal Wind Farm Assessment by IEC61400,” Taiwan Power Research Institute, 2015.
[13] Yi-Sheng Tsai Chih-Chung Li Huei-Jeng Lin Hsin-Haou Haung, “Simulation of flow field and stress analysis for Vestas V47 Wind Turbines,” Assistant Professor, Department of Engineering Science and Ocean Engineering College of Engineering, National Taiwan University, 2013.
[14] J. Q. Guo, G. C. Tsai, and C. K. Fang, “Fluid-Structural Coupling Analysis of Large Turbine under Extreme Climate Conditions,” Department of Mechanical and Electro-Mechanical Engineering, 2015.
[15] 張正興、劉宗憲,“風力發電機結構受風之CFD模擬”,淡江大學土木工程學系,2015
[16] W. S. Li, “Fluid-Structure Coupling Analysis of Large Wind Turbine,” Department of Mechanical and Electro-Mechanical Engineering National Ilan University Master Thesis.
[17] 鄭榮和、李聚儒、蔡耀庭、黃宋儒、林晨宇、楊泰紳,“台中港區 2 號風機應力與動態分析計畫期末報告”,台大慶齡工業研究中心,2009。
[18] 張詠昌,“風力發電機塔架可靠度分析”,國立台灣大學,碩士論文,2011。
[19] K. R. Xie, J. T. Tseng, and Y. Y. Chang, “Load analysis of tower for wind turbine,” Mechanical and Systems Research Laboratories Industrial Technology Research Institute, 2010.
[20] Y. L. Chan, and J. H. Wang, “The Study of Design for Wind Turbine Tower,” Chief, Hakka Affair Department,Hualien County Government, and Associate Professor, Department of Civil Engineering & Environmental Resource Management, Institute of Dahan Technology, 2015.
[21] 劉瑞弘,“風力機結構負載與共振模態之分析”,工業技術研究院機械與系統所風力發電技術部。
[22] 張書瑜,“p-y曲線應用砂土層離岸風機群樁基礎之行為分析”,國立成功大學,碩士論文,2015。
[23] 王柏凱,“p-y曲線應用於離岸風機基樁循環載重之研究”,國立成功大學,碩士論文,2016。
[24] J. Li, J. Yang, and J. Gao, “Stress Analysis on Tower Bolt Connection in Large Wind Turbine Set,” Research Insitute of Mechnical and Electronic Engineering, Taiyuan University of Technology, and Technology Center of Taiyuan Heavy Industy Co. Ltd, 2011.
[25] 陳義東, 王想連, 姜土根,“利用ANSYS Workbench對螺栓組件進行應力分析”,中國聯合工程公司,2012
[26] “Guidelines for Design of Wind Turbines, ”Det Norske Veritas, Copenhagen and Wind Energy Department, Riso National Laboratory, 2002
[27] 網路資料︰台灣WORD。取自http://www.twword.com/wiki/%E8%9E%BA%E6%A0%93%E9%A0%90%E7%B7%8A%E5%8A%9B#13
[28] 網路資料︰台灣WORD。取自 https://en.wikipedia.org/wiki/Bolted_joint
[29] “VESTAS V80-2.0MW 2000 80.0,” Vestas, 2000.
[30] “彰工Ⅱ塔架結構計算書”,施忠賢,施忠賢結構計師事務所,2010。
[31] “CNS 15176-1”,經濟部標準檢驗局,2008。
[32] “Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs with specified property classes — Coarse thread and fine pitch thread,” ISO 898-1, International Organization for Standardization, 2009.
[33] 曹青、張燎軍、汪清,“地基基礎對風力發電機塔架系統地震響應的影響研究”,河海大學水利水電學院,2011。
[34] 崔海平、黃俊仁、馮君平、倪勝火,“陸域風力機第四次工作會議”,金屬工業研發中心、中央大學、成功大學,2018
電子全文 電子全文(網際網路公開日期:20210801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔