(3.235.11.178) 您好!臺灣時間:2021/03/07 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:凃銘濠
研究生(外文):Ming-Hao Tu
論文名稱:以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
指導教授:葉維磬
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:129
中文關鍵詞:旋轉鍛造螺旋傘形齒輪有限元素分析
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文透過有限元素軟體Deform-3D進行旋轉鍛造螺旋傘形齒輪模擬分析,探討加工參數以及胚料幾何參數對鍛造最大成形力以及填充率的影響,並找出最合適之加工條件,達到提升填充率及降低成形力的目的。本文設計之旋轉鍛造加工參數包含下模具每轉進給量S以及上模具傾斜角γ;胚料幾何參數包含胚料中段直徑D及胚料高度H。實驗設計採用Box-Behnken四因子三水準設計,以建構二階反應曲面。本文共建立25組實驗點進行模擬分析,其中包含一組中心點實驗,再使用統計軟體Minitab對模擬結果進行回歸分析,建立最大成形力以及填充率之預測模型,進而探討各因子對品質特性的影響,並找出最佳化條件。以有限元素模擬結果對本文所建構之預測模型進行檢驗,其結果顯示預測模型具有一定的準確度。
An FEM model of cold rotary forging of a spiral bevel gear is developed under the DEFORM-3D software. To observe the influence of work-piece geometry parameters and rotary forging process parameters to the forging maximum load and die-filling rate. Also, intend to find the rotary forging condition for optimum design.
The four factors in the design include the work-piece geometry parameters, such as height H and middle diameter D, and rotary forging process parameters, such as inclination angle of the upper die γ and feed amount of per revolution S. The experiment adopts 25 groups of analogs with the Box-Behnken design. Using the Minitab software to do the regression analysis and develop the prediction equations. Obtaining the optimum design of the forging maximum load and die-filling rate by using response surface methodology. Through the results of FEM simulations to verify the prediction equations with considerable accuracy.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xi
符號說明 xiii
第一章 緒論 1
1-1研究背景與動機 1
1-2金屬加工方法 3
1-3文獻回顧 6
1-3-1圓柱及圓環旋轉鍛造鍛粗加工 6
1-3-2傘形齒輪旋轉鍛造加工 12
1-3-3模具淨成形設計 18
第二章 基本理論 20
2-1旋轉鍛造成形原理 20
2-2旋轉鍛造運動分析 24
2-3傘形齒輪模具建立 34
第三章 有限元素法與實驗設計法 38
3-1有限元素模擬 38
3-1-1有限元素法於塑性加工之應用 39
3-1-2有限元素法之力學模式及數值分析 40
3-2 Deform-3D有限元素軟體 41
3-2-1軟體介紹 41
3-2-2 Deform-3D的使用流程 41
3-3有限元素模擬設定 44
3-3-1旋轉鍛造加工參數及材料性質 44
3-3-2有限元素網格建構與模擬收斂性探討 46
3-3-3旋轉鍛造螺旋傘形齒輪有限元素分析結果例 49
3-4實驗設計法[44] 56
3-4-1反應曲面法(Response Surface Methodology,RSM) 56
3-4-2回歸分析基本理論 57
3-4-3模擬實驗因子與水準 59
第四章 結果與討論 62
4-1模擬驗證 62
4-2旋轉鍛造螺旋傘型齒輪模擬結果 64
4-2-1旋轉鍛造軸向成形力 64
4-2-2旋轉鍛造填充率 65
4-2-3等效應力與等效應變 68
4-2-4模擬結果 69
4-3回歸分析 71
4-3-1鍛造成形力(F)之回歸分析 71
4-3-2鍛造填充率(f)之回歸分析 74
4-3-3殘差分析 78
4-4預測模型檢驗 81
4-5螺旋傘型齒輪最佳化分析與結果例 82
4-6品質因子對品質特性之效應 92
4-6-1品質因子對成形力之效應 92
4-6-2品質因子對填充率之效應 94
第五章 結論與建議 98
5-1結論 98
5-2建議 98
參考文獻 100
附錄A 106
附錄B 109
[1] E. E. Slick, "Method of and apparatus for forgingmetal". US Patent 915 232, 16 March 1909.
[2] Z. Marciniak, “A rocking-die technique for cold-forming operations”, Machinery and Production Engineering, Vol. 117, pp. 792-797, 1970.
[3] R.A.C. Slater, and E. Appleton, “Some experiments with model materials to simulate the rotary forging of hot steels”, Machine Tool Design Research Conf., Binningham, U.K., pp. 1117-1136, 1970.
[4] P. M. Standring, and E. Appleton, “Rotary forging developments in Japan, Part 1, Machine development and forging research”, Journal of Mechanical Working Technology, Vol. 3, No. 3, pp. 253-273, 1980.
[5] M. Zhang, “Calculating force and energy during rotating forging”, In 3 rd International Conference on Rotary Metalworking Processes(ROMP 3), pp. 115-124, 1984.
[6] J. Oudin, Y. Ravalard, G. Verwaerde, and J. C. Gelin, “Force, torque and plastic flow analysis in rotary upsetting of ring shaped billets”, International journal of mechanical sciences, Vol. 27, No. 11, pp. 761-780, 1985.
[7] Z. Decheng, Y. Shijian, Z. R. Wang, and X. Zhenrui, “Defects caused in forming process of rotary forged parts and their preventive methods”, Journal of Materials Processing Technology, Vol. 32, No. 1, pp. 471-479, 1992.
[8] W. Guangchun, X. Kemin, and L. Yan, “Methods of dealing with some problems in analyzing rotary forging with the FEM and initial application to a ring workpiece”, Journal of materials processing technology, Vol. 71, No. 2, pp. 299-304, 1997.
[9] S. Choi, K. H. Na, and J. H. Kim, “Upper-bound analysis of the rotary forging of a cylindrical billet”, Journal of Materials Processing Technology, Vol. 67, No. 1, pp. 78-82, 1997.
[10] H. K. Oh, and S. Choi, “A study on center thinning in the rotary forging of a circular plate”, Journal of materials processing technology, Vol. 66, No. 1, pp. 101-106, 1997.
[11] G. Liu, S. J. Yuan, Z. R. Wang, and D. C. Zhou, “Explanation of the mushroom effect in the rotary forging of a cylinder”, Journal of materials processing technology, Vol. 151, No. 1, pp. 178-182, 2004.
[12] X. Han, L. Hua, W. Zhuang, and X. Zhang, “Process design and control in cold rotary forging of non-rotary gear parts”, Journal of Materials Processing Technology, Vol. 241, pp. 2402-2416, 2014.
[13] I. Montoya, M. T. Santos, I. Pérez, B. González, and J. F. Puigjaner, “Kinematic and sensitivity analysis of rotary forging process by means of a simulation model”, International Journal of Material Forming, Vol. 1, No. 1, pp. 383-386, 2008.
[14] G. Liu, S. J. Yuan, Z. R. Wang, and T. Xie, "Finite element model and simulation of rotary forging of a disc," ACTA Metallurgica Sinica (English Letters), vol. 13, No. 2, pp. 470-475, 2009.
[15] X. Han, and L. Hua, “Comparison between cold rotary forging and conventional forging”, Journal of mechanical science and technology, Vol. 23, No. 10, pp. 2668-2678, 2009.
[16] X. Han, and L. Hua, “3D FE modeling simulation of cold rotary forging of a cylinder workpiece”, Materials & Design, Vol. 30, No. 6, pp. 2133-2142, 2009.
[17] X. Han, and L. Hua, “Effect of size of the cylindrical workpiece on the cold rotary-forging process”, Materials & Design, Vol. 30, No. 8, pp. 2802-2812, 2009.
[18] X. Han, and L. Hua, “3D FE modeling of cold rotary forging of a ring workpiece”, Journal of Materials Processing Technology, Vol. 209, No. 12-13, pp. 5353–5362, 2009.
[19] X. Han, and L. Hua, “Friction behaviors in cold rotary forging of 20CrMnTi alloy”, Tribology International, Vol. 55, pp. 29-39, 2012.
[20] X. Han, and L. Hua, “3D FE modeling of contact pressure response in cold rotary forging”, Tribology International, Vol. 57, pp. 115–123, 2012.
[21] X. B. Deng, L. Hua, and X. H. Han, “Three-dimensional FE modelling simulation of cold rotary forging of spiral bevel gear”, Ironmaking and Steelmaking, Vol. 38, No. 2, pp. 101-111, 2011.
[22] Z. S. Gao, J. B. Li, X. Z. Deng, J. J. Yang, F. X. Chen, A. J. Xu, and L. Li, “Research on gear tooth forming control in the closed die hot forging of spiral bevel gear”, The International Journal of Advanced Manufacturing Technology, Vol. 94, No. 5-8, pp. 2993-3004, 2018.
[23] H. Wang, S. Sun, J. Xia, and M. Zhang, “3D Finite Element Simulation of Rotary Forging in Spiral Bevel Driven Gear”, China Metalforming Equipment & Manufacturing Technology, Vol. 40, No. 3, pp. 93-96, 2005.
[24] R. Hu, P. Y. Cheng, L. Hua, Z. G. Lu, and J. Lan, “Influence of Processing Parameter on Stress and Failure Form of Rotary Roll Cavity Die for Straight Tooth Bevel Gear”, Hot Working Technology, Vol. 36, No. 1, pp. 38-41, 2007.
[25] P. Y. Cheng, R. Hu, Z. G. Lu, and L. Hua, “3D numerical simulation of rotary forging for bevel gear blank”, China Metalforming Equipment & Manufacturing Technology, Vol. 40, No. 3, pp. 93-96, 2008.
[26] 何明祥,「斜齒輪溫間擺輾鍛造模具最佳化設計與壽命預估之研究」,國立高雄應用科技大學,碩士論文,民國97年。
[27] Y. Li, H. Wang, X. Wang, and C. Zhu, “Study on rotary forging process of spiral bevel gear”, Forging & Stamping Technology, Vol. 34, No. 6, pp. 24-27, 2009.
[28] X. Deng, L. Hua, X. Han, and Y. Song, “Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear”, Materials & Design, Vol. 32, No. 3, pp. 1376-1389, 2011.
[29] G. Samołyk, “Investigation of the cold orbital forging process of an AlMgSi alloy bevel gear”, Journal of Materials Processing Technology, Vol. 213, No. 10, pp. 1692-1702, 2013.
[30] W. Feng, W. Yao, C. Shao, and Y. Hu, “Simulation and Analysis of Four Trajectories of Orbital Forming Press Head”, Journal of Netshape Forming Engineering, 2010.
[31] 劉漢貴,李祖榮,朱國瑾,「擺輾運動軌跡及調整曲線的分析研究」,精密成形工程,第十三冊編號4, 90-94頁,1995。
[32] W. Zhuang, L. Hua, X. Han, and L. Dong, “Distribution of Microstructure and Vickers Hardness in Spur Bevel Gear Formed by Cold Rotary Forging”, Advances in Mechanical Engineering, Vol. 6, pp. 1-13, 2014.
[33] 馮文成,姚萬貴,蔣鵬,石一磬,「擺輾機新型多辦玫瑰線的運動軌跡」,塑性工程學報,第20卷,第6期。
[34] 蕭至祥,「傘形齒輪旋轉鍛造製程有限元素分析」,國立中央大學,碩士論文,民國103年。
[35] 趙龍清,「以有限元素法與反應曲面法分析加工路徑對旋轉鍛造齒輪最佳化設計之影響」,國立中央大學,碩士論文,民國104年。
[36] 蘇耿民,「以有限元素法及反應曲面法分析旋轉鍛造傘形齒輪之加工問題」,國立中央大學,碩士論文,民國104年。
[37] 張劭賓,「加工路徑對傘形齒輪旋轉鍛造製程之有限元素法與應曲面法分析」,國立中央大學,碩士論文,民國105年。
[38] 黃乙玄,「有限元素法與反應曲面法對傘型齒輪旋轉鍛造之模具磨耗分析」,國立中央大學,碩士論文,民國106年。
[39] 蔡智元,「不同製程參數及螺旋角之螺旋傘齒輪鍛造製程之數值分析」,國立高雄應用科技大學,碩士論文,民國106年。
[40] T. A. Deng, “The net-shape forming of gears”, Material and Design, Vol. 21, pp. 271-278, 2000.
[41] E. Sleeckx, and J. P. Kruth, “Review of flash design rules for closed-die forgings”, Journal of Materials Processing Technology, Vol. 31, pp. 119-134, 1992.
[42] J. Groenbaek, and T. Birker, “Innovations in cold forging die design”, Journal of Materials Processing Technology, Vol. 98, pp. 155-161, 2000.
[43] J. H. Song, Y. T. Im, “Process design for closed-die forging of bevel gear by finite element analyses”, Journal of Materials Processing Technology, Vol. 192-193, pp. 1-7, 2007.
[44] 葉怡成,實驗設計法:製程與產品最佳化,五南出版社,民國90年6月。
[45] V. Ranatunga, J. S. Gunasekera, W. G. Frazier, and K. D. Hur, “Use of UBET for design of flash gap in closed-die forging”, Journal of Materials Processing Technology, Vol. 111, pp. 107-112, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔