(3.239.33.139) 您好!臺灣時間:2021/03/03 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝育霖
研究生(外文):Yu-Lin Hsieh
論文名稱:以電漿診斷工具進行太陽電池用矽薄膜製程開發
論文名稱(外文):Development of silicon thin film process for solar cells with plasma diagnostic tools
指導教授:利定東張正陽張正陽引用關係李朱育
指導教授(外文):Tomi T. LiJenq-Yang ChangJu-Yi Lee
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:131
中文關鍵詞:光放射光譜四極柱質譜鈍化層
外文關鍵詞:optical emission spectrometry (OES)quadrupole mass spectrometry (QMS)passivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究以硬體設備為出發點實際運用電漿診斷工具光放射光譜儀(OES)與四極柱質譜儀(QMS)進行PECVD機台硬體測試、製程開發與優化,從無到有建構一套完整的PECVD鍍膜系統。

在硬體測試方面,首先透過監測不同流量與壓力下之控壓閥開合角度變化,確認製程流量與壓力之對應下限。再利用OES進行Ar電漿放光測試,了解機台電極間距對RF功率吸收之變化趨勢,最後配合電漿診斷工具之操作區間定義出本PECVD系統目標製程開發區間。

在製程開發方面,在5nm超薄本質鈍化層製程再現性優化過程中,經電漿診斷與薄膜分析後發現,前次製程殘留之交叉汙染現象與腔壁殘存水氣為影響超薄本質鈍化層再現性之主因。
根據分析結果,分別以清腔製程OES光譜氟氧比之光強(F*/O*=0.9~1.4)為清腔製程終點與預鍍製程累積鍍膜厚度需達到1800nm以上兩條件做為標準,建立一套穩定產出5nm超薄鈍化薄膜lifetime穩定達到~800us之方法供本研究團隊使用。

接著透過調整預鍍參數大幅縮短產出高品質之超薄鈍化薄膜之準備時間。最後透過堆疊10nm磷化氫摻雜薄膜與5nm本質鈍化薄膜,達到場效鈍化lifetime1900µs之水準。驗證本自行開發之PECVD系統之製程能力。
In this study, using hardware equipment as the starting point, the in situ plasma diagnostic systems of optical emission spectrometry (OES) and quadrupole mass spectrometry (QMS) was used to improve the hardware and process of PECVD machine, and a complete PECVD system was constructed from scratch.

In terms of hardware testing, firstly, by monitoring the change of angle of the pressure control valve under different flow rates and pressures, the corresponding lower limit of the process flow and pressure is confirmed. Then use OES to perform an Ar plasma discharge test to understand the change trend of the electrode spacing of the machine to the RF power absorption. Finally, the development of target process window of the PECVD system is defined by the operation interval of the plasma diagnostic tool.

In terms of process development, in the process of optimizing the process reproducibility of the ~5nm ultra-thin intrinsic passivation layer, after plasma diagnosis and thin film analysis, it was found that the cross-contamination phenomenon of the previous process residue and the residual moisture of the chamber wall are the main factors affecting the reproducibility of the ultra-thin intrinsic passivation layer.
According to the analysis results, the OES intensity of the clear process (F*/O*=0.9~1.4) is taken as the standard for the end-point of the chamber cleaning process, and the chamber coating thickness of the predeposition process needs to reach 1800 nm or above. A method for stably producing high-quality 5nm ultra-thin passivation film (minority carrier lifetime stable up to ~800us) was established for use by the research team.Then, by adjusting the predeposition parameters, the preparation time for producing a high-quality ultra-thin passivation film is greatly shortened. Finally, by stacking a 10 nm phosphide doped film and a 5 nm intrinsic passivation film, the field effect passivation lifetime 1900μs is achieved. Verify the process capability of this self-developed PECVD system.
摘要 i
Abstract iii
圖目錄 ix
表目錄 xi
第一章 緒論 1
1-1研究背景 1
1-2研究動機與目的 3
1-3論文計畫大綱 4
第二章 文獻回顧與基本原理 5
2-1 太陽電池簡介 5
2-1-1 太陽電池原理 5
2-1-2 HIT太陽電池介紹 8
2-2 化學氣象沉積CVD原理 9
2-2-1 RF PECVD原理 9
2-3 薄膜沉積 10
2-3-1 薄膜沉積原理 10
2-3-2 氫化非晶矽薄膜介紹 13
2-3-3太陽電池之載子生命週期 17
2-3-4矽薄膜硼參雜原理 24
2-4 電漿診斷 25
2-4-1 電漿基本原理 25
2-4-2 OES原理 32
2-4-3 QMS原理 34
第三章 研究方法 39
3-1 實驗方法 39
3-2 實驗步驟 39
3-2-1 試片清洗 40
3-2-2 試片製作 42
3-3 實驗設備 43
3-3-1 PECVD 43
3-3-2光放射光譜儀OES 43
3-3-4 四極柱質譜儀QMS 47
3-3-5傅里葉變換紅外光光譜儀FTIR 48
3-3-6 橢圓儀S.E. 51
3-3-7光電導生命週期量測儀 Photoconductance lifetime tester 52
3-3-8霍爾量測 Hall measurement 53
第四章 結果與討論 55
4-1 PECVD製程極限範圍測試 55
4-2 腔體背景對於超薄本質鈍化層之影響 59
4-2-1 定義腔體起始點 59
4-2-2 超薄鈍化薄膜再現性測試 63
4-2-3腔體製程環境對鈍化薄膜結構之影響 66
4-2-4預鍍時腔體製程環境之電漿診斷分析 71
4-3不同預鍍條件對製程環境之影響 79
4-3-1預鍍條件之參數設定 79
4-2-2 不同預鍍條件(高/低鍍率)對鈍化薄膜之影響 81
4-4 總進氣量對界面之影響 87
4-5 場效鈍化效應 98
第五章 未來研究方向與結論 105
參考文獻 109
[1] NREL,http://www.nrel.gov/
[2] 顧鴻濤,太陽能電池元件導論,全威出版社,2008年6月。
[3] http://panasonic.net/ecosolutions/solar/hit/
[4] Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[5] Venables J. A., et al. “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol.47, pp. 399, 1984.
[6] M. S. Valipa, E. S. Aydil, D. Maroudas, “Atomistic calculation of the SiH3 surface reactivity during plasma deposition of amorphous silicon thin films”, Surface Science, Vol. 572, pp. 339-347, 2004.
[7] A. von Keudell and J. R. Abelson, “Direct insertion of SiH3 radicals into strained Si-Si surface bonds during plasma deposition of hydrogenated amorphous silicon films”, Physical Review B, Vol. 59, no. 8, Article ID 5791, 1999.
[8] H. Sterling and R. Swann, “Chemical vapor deposition promoted by rf discharge”, Solid-State Electronics, Vol. 8, pp.653-654, 1965.
[9] W. E. Spear and P. G. LeComber, “Investigation of the localized state distribution in amorphous Si films”, Journal of Non-Crystalline Solids, Vol. 8-10, pp. 727-738, 1972.
[10] A. Triska, D. Dennison, and H. Fritzsche, “Hydrogen content in Amorphous Ge and Si prepared by RF decomposition of GeH4 and SiH4”, Bulletin of American Physics Society, Vol. 20, pp. 392-397, 1975.
[11] M. B. Howard, “Hydrogen collision model of light induced metastability in hydrogenated amorphous silicon”, Solid State Communications, Vol. 105, pp. 387-391, 1998.
[12] A. H. Mahan, D. L. Williamson, B. P. Nelson, R. S. Crandall, “Small angle X-ray scattering studies of microvoids in a-SiC:H and a-Si:H”, Solar Cells, Vol. 27, pp. 465-476, 1989.
[13] M. Stutzmann, W. B. Jackson and C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study”, Physical Review B, Vol. 32, pp. 23, 1985.
[14] D. Staebler and C. Wronski, “Reversible conductivity changes in Discharge produced amorphous Si”, Applied Physics Letters, Vol. 31, pp. 292-294, 1977.
[15] Y. Ruoche and L. Kuixun, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio frequency glow discharge”, 1997.
[16] M. Kishner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, Journal of Applied Physics, Vol. 62, pp. 2803-2811, 1987.
[17] Y. Yamamoto, Y. Uraoka, T. Fuyuki, “Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single Crystalline Silicon Thin Film Solar Cells”, Japanese Journal of Applied Physics, Vol. 42, pp. 5135-5139, 2003.
[18] Burrows, M. Z., et al., “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science & Technology A, Vol. 26(4), pp. 683-687, 2008.
[19] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee, A. Yamada, M. Konagai, “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46(6A), pp. 3296-3300, 2007.
[20] Satoshi Nakayama ,” ECR(electron cyclotron resonance) plasma for thin film technology”, Pure & Appl. Chem., Vol. 62, No. 9, pp. 1751-1756, 1990.
[21] 張以忱 等編著,真空鍍膜技術,冶金工業出版社,2009年
[22] M. Quirk and J. Serda, Semiconductor Manufaceturing Technology, Ch11 Deposition, 2011.
[23] Akihisa Matsuda, et al., “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol 78, pp. 3–26, 2003.
[24] Tristant P., et al. “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol.390, pp. 51–58, 2001.
[25] Robertson, R. D., Hils, H. Catham, and A. Gallagher, “Laser plasma coupling in long pulse, long scale length plasmas”, Appl. Phys. Lett., Vol.43, pp.54, 1983
[26] A. Francis, et al. “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol. 71, pp. 3796–3799, 1997.
[27] 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文,2008年。
[28] Thomas L., et al. “ Microwave plasma chemical vapour deposition of tetramethylsilane: correlations between optical emission spectroscopy and film characteristics ”, Surface and Coatings Technology, Vol.142, pp.314-320.2001.
[29] Kholodkov A. V., Golant K. M.and Nikolin I. V., “Nano-scale compositional lamination of doped silica glass deposited in surface discharge plasma of SPCVD technology”, Microelectronic Engineering, Vol.69, pp.365-372,2003.
[30] Escobar-Alaron L., et al. “Characterization of rear- and front-side laser ablation plasmas for thin-film deposition”, Applied Surface Science, vol.197, pp.192-196,2002.
[31] Benissad N., et al. ” Silicon dioxide deposition in a microwave plasma reactor ”. Surface and Coatings Technology. Vol.116, pp.868–873,1999.
[32] Aumaille K., et al.” A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor”, Thin Solid Films, Vol. 359,pp. 188–196, 2000.
[33] Granier A, et al. “Optical emission spectra of TEOS and HMDSO derived plasmas used for thin film deposition”, Plasma Sources Science and Technology, Vol.12, pp.89–96, 2003.
[34] Zambrano G, et al. “Optical emission spectroscopy study of r.f. magnetron sputtering discharge used for multilayers thin film deposition”, Surface and Coatings Technology, Vol.72, pp.144–149, 2003.
[35] Nicolazo F, et al. “Study of oxygen/TEOS plasmas and thin SiOx films obtained in an helicon diffusion reactor ”,Surface and Coatings Technology,Vol.98, pp.1578–1583,1998.
[36] Clay K.J, et al. “Characterization of a‐C:H:N deposition from CH4/N2 rf plasmas using optical emission spectroscopy ”, J. Appl. Phys., Vol.79, pp.7227–7233.1996.
[37] Czerwiec T, et al. “Determination of O atom density in Ar-O2 and Ar-O2-H2 flowing microwave discharges”, Surface and Coatings Technology, Vol.98, pp.1411-1415,1998.
[38] Horii N. M, Okimura K., and Shibata A, “Investigation of SiO2 deposition processes with mass spectrometry and optical emission spectroscopy in plasma enhanced chemical vapor deposition using tetraethoxysilane”. Thin Solid Films, Vol.343, pp.148-151,1999.
[39] Hsiao H. L, et al. “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol.142, pp.316–321, 1999.
[40] Yoon S.F, et al. “Effect of microwave power on the electron energy in an electron cyclotron resonance plasma”, Vacuum, Vol.61, pp.29–35, 2001.
[41] Durrant S.F,De Moraes M.A.B.and Mota R.P,” Plasmapolymerized hexamethyldisiloxane: discharge and filmstudies”, Vacuum, Vol.47, pp.187-192,1996.
[42] Hiden PSM 操作手冊
[43] Tomonori N., et al. “Amorphous silicon solar cells deposited at high growth rate”, Journal Non-Crystalline Solids, Vol. 299, pp.1116–1122, 2002.
[44] Guha S., et al. “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol. 61, pp. 1444–1446, 1992.
[45] Lucovsky G., et al. “ Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films”, Phys. Rev. B ,Vol.28,pp.3225–3233,1983.
[46] G. Jellison, F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region”, Applied Physics Letters, Vol. 69, pp. 371-378, 1996.
[47] S.M. SZE, "Semiconductor Devices Physics and technology", pp. 55~56 (2001).
[48] Donald A. Neamen, "Semiconductor Physics and Devices", pp. 177~180 (2003).
[49] 黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[50] National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
[51] Swanson, “A vision for crystalline silicon photovoltaics”, Progress in Photovoltaics, Vol. 14, pp. 443-453, 2006.
[52] H. Sakata and M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE 4th World Conference, 2006.
[53] ITRPV Edition 2016_Revision 1,2016,http://www.itrpv.net/Home/.
[54] Kenta Arima, et al. “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale”, Physica B, Vol 376–377, pp.893–896, 2006.
[55] Yang H, et al. “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol.472, pp.125-129, 2005.
[56] 羅正忠,半導體製程技術導論,歐亞出版社,2006 年。
[57] I. H. Hutchinson, Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
[58] Matsuda A, et al. “Solar Energy & Solar Cells”, 2003,78,3
[59] Akihisa Matsuda, “Thin-Film Silicon — Growth Process and Solar Cell Application”, J.J.A.P., Vol 43, pp. 7909–7920, 2004.
[60] Yao Ruohe, et al. “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997.
[61] W.G.J.H.M. van Shark, “Methods of Deposition of Hydrogenated Amorphous Silicon Device Applications”, pp. 80–81, 2002.
[62] Zhu Zu song, et al. “Studying on the Electron Charateristic of Argon Plasma in the PECVD System”, Vacuum, Vol 84, pp. 1381–1384, 2010.
[63] ]WANG Qing, BA Dechun, FENG Jian, “Diagnosis of the Argon Plasma in a PECVD Coating Machine”, Plasma Science and Technology, Vol 10, No. 6, 2008.
[64] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[65] 莊達人,VLSI 製造技術,高立圖書有限公司,1996年。
[66] Triska, A., D. Dennison, and H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 392, 1975.
[67] R.E. I. Schropp and M.Zeman, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling”, Materials and Device Technology, Kluwer Academic, Boston, 1998.
[68] John Robertson. “Growth mechanism of hydrogenated amorphous silicon” , Journal of Non-Crystalline Solids, Vol 266-269, pp. 79–83, 2000.
[69] 陳治明,非晶半導體材料與器件,科學出版社,民國八十年。
[70] A. Matsuda, "Microcrystalline silicon. Growth and device application" , Journal of Non-Crystalline Solids, Vol. 338, pp. 1-12, Jun 15 , 2004.
[71] ]H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
[72] Staebler, D. L., Wronski, C. R., Appl. Phys. Lett. Vol. 31 (1977) 292-294.
[73] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the hetero interface of a-Si:H/c-Si solar cells”, Applied Physics Letters, Vol. 90, pp. 013503-013506, 2007.
[74] F. Zignani, et al., “Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate”, Thin Solid Films,Vol. 451–452, pp. 350–354, 2004.Vol. 451–452, pp. 350–354, 2004.
[75] U. Kroll, J. Meier,A. Shah, S. Mikhailov, and J, Weber, J. Appl. Phys. 80,4971 , 1996.
[76] Norbert H. Nickel: Hydrogen in semiconductor II, 61 , 1999.
[77] Min-sung Jeon and Koichi Kamisako “Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells”, transactions on electrical and electronic materials, vol. 10, no. 3, june 25, 2009.
[78] M.H. Brodsky, Qiming Li, B.C Pan, and Y. Yoon, Phys.1 Rev. B, 57 , 2253 , 1998.
[79] Jia Ge, et al., “Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy”, JOURNAL OF APPLIED PHYSICS 113, 234310 , 2013.
[80] Taguchi, M., et al., "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer." Ieee Journal of Photovoltaics 4(1): 96-99, 2014.
[81] D. L. Meier, et al., “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[82] 黃惠良,曾百亨,太陽電池,五南出版社,民國九十七年十二月。
[83] T. S. Horanyi, et al, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, pp. 306-311, 1993.
[84] P. Kumar, F. Zhu, A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
[85] Sanjay K. Ram, et al., “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi©, Vol 7, No. 3–4, pp. 553–556, 2010.
[86] Shui-Yang Lien et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol 357, pp.161–164, 2011.
[87] Yusuke Fukuda, et al. , “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
[88] Matsuda A., ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol 337, pp. 1, 1999.
[89] H. L. Hsiao, et al., “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol 142, pp. 316–321, 1999.
[90] Madoka Takai, et al., “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Appl. Phys. Lett., Vol 77, pp. 18, 2000.
[91] Zhimeng Wua, et al., “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy”, Physica E, Vol 33, pp. 125–129, 2006.
[92] Kimihiko Saito, Michio Kondo, “Investigation of crystalline orientation factor in microcrystalline silicon thin film deposition”, Phys. Status Solidi A, Vol 207, No. 3, pp. 535–538, 2010.
[93] Masatishi Kitagawa, et al., “Properties of Hydrogenated Amorphous Silicon Prepared by ECR Plasma CVD Method”, J.J.A.P., Vol 27, pp. 2026–2031, 1988.
[94] Minsung Jeon , et al., “Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique”, Current Applied Physics 10 S237–S240 , 2010.
[95] 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學物理研究所碩士論文,民國九十四年。
[96] P. Klement, et al., "Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers," Appl. Phys. Lett., Vol. 102 (2013).
[97] 劉憲明,「寬能隙本質氫化非晶氧化矽(a-SiOx:H)薄膜光電特性與鈍化品質之關聯探討」,國立中央大學,碩士論文,民國一百零三年。
[98] 樊洁平,劉惠民,田強,「光吸收介質的吸收係數與介電函數虛部的關係,大學物理,28卷,3期,民國九十八年。

[99] 林明獻,太陽能電池技術入門,全華科技圖書股份有限公司印行 2008年。
[100] R.Martins, et al. “Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films”, Thin Solid Films, Vol.383, pp.165-168, 2001.
[101] S. Kim, et al., ” Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells”, Solar Energy Materials & Solar Cells, Vol. 117, pp. 174–177, 2013
[102] N. Kosku, S. Miyazaki, “Insights into the high-rate growth of highly crystallized silicon films from inductively coupled plasma of H2 -diluted SiH4” , Thin Solid Films, 511-512 (2006) 265-270.
[103] L. Latrasse, et al., “Characterization of high density matrix microwave argon plasmas by laser absorption and electric probe diagnostics”, J. Phys. D: Appl. Phys., vol. 40, pp.5177 -5186,2007.
[104] T Moiseev, et al. , “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
[105] 吳培慎,「利用PECVD製備超薄本質氫化非晶矽(a-Si:H)薄膜之優質鈍化成效研究」,國立中央大學,碩士論文,2015年。
[106] 張濟忠,現代薄膜技術,冶金工業出版社,2009年。
[107] 王增福,實用鍍膜技術,電子工業出版社,2008年。
[108] Moriaki Wakaki, et al.著,周海憲、程云芳譯,光學材料手冊,化學工業出版社,2010年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔