(3.220.231.235) 您好!臺灣時間:2021/03/07 11:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林蓁君
研究生(外文):Chen-Chun Lin
論文名稱:運用金-錳氧化物/單壁奈米碳管修飾電極進行三價砷之伏安法分析
論文名稱(外文):Detection of Arsenic(III) by Gold-Manganese Oxides/Single Walled Carbon Nanotubes Modified Glassy Carbon Electrode
指導教授:秦靜如秦靜如引用關係
指導教授(外文):Ching-Ju Chin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:128
中文關鍵詞:單壁奈米碳管複合材料線性掃描伏安法即時監測
外文關鍵詞:single walled carbon nanotubescompositeslinear scanning voltammetryIn-situ monitoringarsenic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
重金屬砷具有高毒性,若人體攝入無機砷,可能使罹患皮膚癌、肝癌、膀胱癌和肺癌的風險增加。傳統的水質採樣分析需要前處理和耗費時間,無法即刻反應水質異常,因此需要即時水質分析來有效掌握水處理成效,而伏安法可以快速地得到水質變化。本研究製備複合材料修飾電極,運用伏安法分析使獲得更好偵測砷的靈敏度以及低干擾性。
本研究旨在開發金-錳氧化物/單壁奈米碳管修飾電極(Au-MnOx/SWCNT/GCE)進行三價砷之伏安法分析,首先選定金和錳電沉積在單壁奈米碳管修飾電極上的電鍍程序,再選出最佳製備條件。探討製備的修飾電極進行偵測三價砷的分析性能,以及偵測三價砷時可能受其他重金屬離子干擾的影響。結果顯示,Au-MnOx/SWCNT修飾電極使用線性掃描伏安法偵測三價砷,呈現良好分析性能。本方法之定量極限為10 μg L-1,LOD為7.04 μg L-1,比砷放流水標準(0.5 mg L-1)和飲用水標準(0.01 mg L-1)還低。本研究開發的電極也不受到Cu(II)、Cr(VI)和Cd(II)之干擾。表示此修飾電極運用在水質監測上具有良好的潛力。
Arsenic is highly toxic and ingestion by humans may increase the risk of cancer. Traditional water quality analysis require pretreatment and time so it cannot give the results promptly. Therefore, In-situ monitoring is needed to effectively control the water treatment processes. However, the voltammetric method can quickly obtain the change of water quality. In this research, composite modified electrodes were prepared and voltammetric analysis was used to obtain a better detection of arsenic sensitivity and low interference.
Au-MnOx/SWCNT modified electrode for arsenic voltammetric analysis is developed in this work. The electroplating procedure of gold and manganese electrodeposited on SWCNT/GCE was selected, then the optimal preparation conditions were selected. The analytical performance of the modified electrode for arsenic detection and the interference of other heavy metal ions in the detection of arsenic were investigated. As a result, Au-MnOx/SWCNT/GCE detects arsenic by LSV and exhibits good analytical performance. The quantification limit is 10 μg L-1 and the LOD is 7.04 μg L-1, which is lower than the effluent standard (0.5 mg L-1) and the drinking water standard (0.01 mg L-1). The electrode developed in this work is also free from the interference of Cu(II), Cr(VI), and Cd(II). In short, such electrode has good potentials in water quality monitoring.
Contents
摘要 i
Abstract ii
誌謝 iv
Contents v
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1. Background 1
1.2. Objectives 3
Chapter 2 Literature Reviews 6
2.1. Patterns and detection methods of arsenic 6
2.2. Voltammetry 10
2.2.1. Electrochemical reaction and principle 11
2.2.2. The application of voltammetry of arsenic 27
2.3. Carbon nanotubes (CNTs) 28
2.3.1. The structure and properties of carbon nanotubes 28
2.3.2. Modification of carbon nanotubes 32
2.3.3. Application of carbon nanotube composite electrodes for electrochemical sensors 34
2.4. Electrode materials for the detection of arsenic 36
2.4.1. CNTs 37
2.4.2. Gold nanoparticle (AuNPs) 38
2.4.3. Manganese oxide (MnOx) 39
Chapter 3 Materials and Methods 42
3.1. Instrumentation 42
3.2. Materials and Chemicals 43
3.3. Modification of working electrode 44
3.3.1. Pretreatment of SWCNT 44
3.3.2. Preparation of modified electrode 45
3.4. Characterization of modified electrodes 47
3.5. Voltammetric analysis 48
3.5.1. Detection of arsenic(III) 48
3.5.2. Interference analysis 48
Chapter 4 Results and Discussions 49
4.1. Characterization of modified electrode 49
4.1.1. SEM &TEM analysis 49
4.1.2. XRD analysis 59
4.1.3. Electrochemical characteristics of modified electrodes 62
4.2. Selection of modified electrode 72
4.2.1. Optimal electroplating procedure of modified electrode 72
4.2.2. Optimal preparation conditions of Au-MnOx/SWCNT/GCE 75
4.3. Voltammetric analysis of As(III) by Au-MnOx/SWCNT/GCE 79
4.4. Interference measurement 83
4.4.1. The interference of Cu(II) 84
4.4.2. The interference of Pb(II) 87
4.4.3. The interference of Cr(VI) 89
4.4.4. The interference of Cd(II) 93
4.5. Memory effect 96
4.6. Stability measurement 98
Chapter 5 Conclusions and Suggestions 99
5.1. Conclusions 99
5.2. Suggestions 100
References 101
Appendix 111
Afkhami, A., Bahiraei, A., and Madrakian, T., "Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium", Materials Science and Engineering: C, 59, 168-176, (2016).
Agrawalla, R. K., Paul, R., Sahoo, P. K., Chakraborty, A. K., and Mitra, A. K., "A facile synthesis of a novel optoelectric material: a nanocomposite of SWCNT/ZnO nanostructures embedded in sulfonated polyaniline", International Journal of Smart and Nano Materials, 5, 180-193, (2014).
Aguirre, M. d. C., Rivas, B. L., Basáez, L., and Peña-Farfal, C., "Electrochemical detection of arsenite with silver electrodes in inorganic electrolyte and natural system mixtures", Journal of the Brazilian Chemical Society, 22, 2362-2370, (2011).
Asif, M., Tan, Y., Pan, L. J., Rashad, M., Li, J. Y., Fu, X., and Cui, R. X., "Synthesis of a highly efficient 3D graphene-CNT-MnO2-PANI nanocomposite as a binder free electrode material for supercapacitors", Physical Chemistry Chemical Physics, 18, 26854-26864, (2016).
ATSDR, "Public Health Statement for Arsenic", Agency for Toxic Substances and Disease Registry, Atlanta, (2007).
Balasubramanian, K. and Burghard, M., "Chemically Functionalized Carbon Nanotubes", Small, 1, 180-192, (2005).
Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications (2nd ed), John Wiley & Sons, NewYork, (2001).
Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., "Carbon Nanotubes--the Route Toward Applications", Science, 297, 787-792, (2002).
Bayazit, M. K., Hodge, S. A., Clancy, A. J., Menzel, R., Chen, S., and Shaffer, M. S. P., "Carbon nanotube anions for the preparation of gold nanoparticle-nanocarbon hybrids", Chemical Communications, 52, 1934-1937, (2016).
Blake, A. J., From 2D to 3D: On the Development of Flexible and Conformal Li-ion Batteries via Additive Manufacturing, Doctoral dissertation, Wright State University, USA, (2016).
Brammer, H. and Ravenscroft, P., "Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia", Environment International, 35, 647-654, (2009).
Brown, A. P. and Anson, F. C., "Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface", Analytical Chemistry, 49, 1589-1595, (1977).
Bu, L., Gu, T., Ma, Y., Chen, C., Tan, Y., Xie, Q., and Yao, S., "Enhanced Cathodic Preconcentration of As(0) at Au and Pt Electrodes for Anodic Stripping Voltammetry Analysis of As(III) and As(V)", The Journal of Physical Chemistry C, 119, 11400-11409, (2015a).
Bu, L., Liu, J., Xie, Q., and Yao, S., "Anodic stripping voltammetric analysis of trace arsenic(III) enhanced by mild hydrogen-evolution at a bimetallic Au–Pt nanoparticle modified glassy carbon electrode", Electrochemistry Communications, 59, 28-31, (2015b).
Calfumán, K., Aguirre, M. J., Villagra, D., Yañez, C., Arévalo, C., Matsuhiro, B., Mendoza, L., and Isaacs, M., "Nafion/tetraruthenated porphyrin glassy carbon-modified electrode: characterization and voltammetric studies of sulfite oxidation in water–ethanol solutions", Journal of Solid State Electrochemistry, 14, 1065-1072, (2010).
Chang, Y. W., Voltammetric determination of arsenic (ІІІ) using gold nanoparticles / single walled carbon nanotubes composite-modified electrode, Master's thesis, National Central University, Taoyuan, (2015).
Chen, H. H. and Huang, J. F., "EDTA Assisted Highly Selective Detection of As3+ on Au Nanoparticle Modified Glassy Carbon Electrodes: Facile in Situ Electrochemical Characterization of Au Nanoparticles", Analytical Chemistry, 86, 12406-12413, (2014).
Chen, L., Zhou, N., Li, J., Chen, Z., Liao, C., and Chen, J., "Synergy of glutathione, dithiothreitol and N-acetyl-L-cysteine self-assembled monolayers for electrochemical assay: sensitive determination of arsenic(III) in environmental and drinking water", Analyst, 136, 4526-4532, (2011).
Chen, Y. H., Kirankumar, R., Kao, C. L., and Chen, P. Y., "Electrodeposited Ag, Au, and AuAg nanoparticles on graphene oxide-modified screen-printed carbon electrodes for the voltammetric determination of free sulfide in alkaline solutions", Electrochimica Acta, 205, 124-131, (2016).
Cheng, J. H., The Study of the Glassy Garbon Electrode Modified by Platinum Nanoparticles and Its Application to Glucose Biosensor, Master's thesis, Southern Taiwan University, Tainan, (2004).
Chimezie, A. B., Hajian, R., Yusof, N. A., Woi, P. M., and Shams, N., "Fabrication of reduced graphene oxide-magnetic nanocomposite (rGO-Fe3O4) as an electrochemical sensor for trace determination of As(III) in water resources", Journal of Electroanalytical Chemistry, 796, 33-42, (2017).
Chootoa, P., Wararattananuraka, P., Kangkamanoa, T., Innuphata, C., and Sirinawin, W., "Determination of inorganic arsenic species by hydride generation atomic absorption spectrophotometry and cathodic stripping voltammetry", ScienceAsia, 41, 187-197, (2015).
Chou, Y. W., Self-Organization and Electrochemical Properties of Metal and Alloy-Coated Carbon Nanotubes, Master's thesis, Yuan Ze University, Taoyuan, (2007).
Cinti, S., Politi, S., Moscone, D., Palleschi, G., and Arduini, F., "Stripping Analysis of As(III) by Means of Screen-Printed Electrodes Modified with Gold Nanoparticles and Carbon Black Nanocomposite", Electroanalysis, 26, 931-939, (2014).
Coneo Rodríguez, R., Bruno, M. M., and Angelomé, P. C., "Au nanoparticles embedded in mesoporous ZrO2 films: Multifunctional materials for electrochemical detection", Sensors and Actuators B: Chemical, 254, 603-612, (2018).
Dai, X. and Compton, R. G., "Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper", Analyst, 131, 516-521, (2006).
Dai, X., Nekrassova, O., Hyde, M. E., and Compton, R. G., "Anodic Stripping Voltammetry of Arsenic(III) Using Gold Nanoparticle-Modified Electrodes", Analytical Chemistry, 76, 5924-5929, (2004).
Devi, P., Bansod, B., Kaur, M., Bagchi, S., and Nayak, M. K., "Co-electrodeposited rGO/MnO2 nanohybrid for arsenite detection in water by stripping voltammetry", Sensors and Actuators B: Chemical, 237, 652-659, (2016).
Du, Y. C., Adsorption of phthalate esters and humic acid on MWCNTs, Master's thesis, National Central University, Taoyuan, (2011).
Duan, Y., Gan, Y., Wang, Y., Liu, C., Yu, K., Deng, Y., Zhao, K., and Dong, C., "Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at Jianghan Plain of Central China", Science of the Total Environment, 607-608, 992-1000, (2017).
Gamboa, J. C. M., Cornejo, L., and Squella, J. A., "Vibrating screen printed electrode of gold nanoparticle-modified carbon nanotubes for the determination of arsenic(III)", Journal of Applied Electrochemistry, 44, 1255-1260, (2014).
Gioia, D. and Casella, I. G., "Pulsed electrodeposition of palladium nano-particles on coated multi-walled carbon nanotubes/nafion composite substrates: Electrocatalytic oxidation of hydrazine and propranolol in acid conditions", Sensors and Actuators B: Chemical, 237, 400-407, (2016).
González-Segura, K., Cañete-Rosales, P., del Rio, R., Yáñez, C., Ferreyra, N. F., Rivas, G. A., and Bollo, S., "Effect of the Dispersing Agent on the Electrochemical Response of Glassy Carbon Electrodes Modified with Dispersions of Carbon Nanotubes", Electroanalysis, 24, 2317-2323, (2012).
Goswami, A. M. and Ghosh, S., "Biological Synthesis of Colloidal Gold Nanoprisms Using Penicillium citrinumMTCC9999", Journal of Biomaterials and Nanobiotechnology, 4, 20-27, (2013).
Gupta, K., Maity, A., and Ghosh, U. C., "Manganese associated nanoparticles agglomerate of iron(III) oxide: Synthesis, characterization and arsenic(III) sorption behavior with mechanism", Journal of Hazardous Materials, 184, 832-842, (2010).
Han, Z. J., Seo, D. H., Yick, S., Chen, J. H., and Ostrikov, K., "MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes", NPG Asia Materials, 6, e140, (2014).
Hsieh, H. C., Determination of Chromium by Voltammetry Using Gold Nanoparticles/Single Walled Carbon Nanotubes Modified Glassy Carbon Electrode, Master's thesis, National Central University, Taoyuan, (2017).
Huang, C. I., Electrochemical analysis of nitrophenol and copper(II) using single walled carbon nanotubes modified electrode, Master's thesis, National Central University, Taoyuan, (2012).
Huang, H.-H., "The Eh-pH Diagram and Its Advances", Metals, 6, 23, (2016).
Huayhuas-Chipana, B. C., Gomero, J. C. M., and Sotomayor, M. D. P. T., "Nanostructured Screen-Printed Electrodes Modified with Self-Assembled Monolayers for Determination of Metronidazole in Different Matrices", Journal of the Brazilian Chemical Society, 25, 1737-1745, (2014).
Ihsanullah, Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., Khraisheh, M., and Atieh, M. A., "Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications", Separation and Purification Technology, 157, 141-161, (2016).
Iijima, S., "Helical microtubules of graphitic carbon", Nature, 354, 56-58, (1991).
Jacobs, C. B., Peairs, M. J., and Venton, B. J., "Review: Carbon nanotube based electrochemical sensors for biomolecules", Analytica Chimica Acta, 662, 105-127, (2010).
Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., and Marathe, K. V., "Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal", Journal of Environmental Management, 162, 306-325, (2015).
Kempahanumakkagari, S., Deep, A., Kim, K. H., Kumar Kailasa, S., and Yoon, H. O., "Nanomaterial-based electrochemical sensors for arsenic - A review", Biosensors and Bioelectronics, 95, 106-116, (2017).
Koza, J. A., Schroen, I. P., Willmering, M. M., and Switzer, J. A., "Electrochemical Synthesis and Nonvolatile Resistance Switching of Mn3O4 Thin Films", Chemistry of Materials, 26, 4425-4432, (2014).
Kruusenberg, I., Alexeyeva, N., Tammeveski, K., Kozlova, J., Matisen, L., Sammelselg, V., Solla-Gullón, J., and Feliu, J. M., "Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution", Carbon, 49, 4031-4039, (2011).
Kumar, U., Sikarwar, S., Sonker, R. K., and Yadav, B. C., "Carbon Nanotube: Synthesis and Application in Solar Cell", Journal of Inorganic and Organometallic Polymers and Materials, 26, 1231-1242, (2016).
Lawrence, N. S., Deo, R. P., and Wang, J., "Comparison of the Electrochemical Reactivity of Electrodes Modified with Carbon Nanotubes from Different Sources", Electroanalysis, 17, 65-72, (2005).
Li, P. C., Hu, C. C., Noda, H., and Habazaki, H., "Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc–air batteries: Effects of the crystalline structure of manganese oxides", Journal of Power Sources, 298, 102-113, (2015).
Liu, Y., Huang, Z., Xie, Q., Sun, L., Gu, T., Li, Z., Bu, L., Yao, S., Tu, X., Luo, X., and Luo, S., "Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III)", Sensors and Actuators B: Chemical, 188, 894-901, (2013).
Liu, Y. and Wei, W., "Jointly modified single-walled carbon nanotubes on low resistance monolayer modified electrode for arsenic(III) detection", Journal of Electroanalytical Chemistry, 624, 299-304, (2008).
Liu, Y. H., Hsi, H. C., Li, K. C., and Hou, C. H., "Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization", ACS Sustainable Chemistry & Engineering, 4, 4762-4770, (2016).
Liu, Z. G. and Huang, X. J., "Voltammetric determination of inorganic arsenic", Trends in Analytical Chemistry, 60, 25-35, (2014).
Loukil, N. and Feki, M., "Zn–Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization", Applied Surface Science, 410, 574-584, (2017).
Luong, J. H. T., Lam, E., and Male, K. B., "Recent advances in electrochemical detection of arsenic in drinking and ground waters", Analytical Methods, 6, 6157-6169, (2014).
Matousek, T., Wang, Z., Douillet, C., Musil, S., and Styblo, M., "Direct Speciation Analysis of Arsenic in Whole Blood and Blood Plasma at Low Exposure Levels by Hydride Generation-Cryotrapping-Inductively Coupled Plasma Mass Spectrometry", Analytical Chemistry, 89, 9633-9637, (2017).
Mette, K., Bergmann, A., Tessonnier, J.-P., Hävecker, M., Yao, L., Ressler, T., Schlögl, R., Strasser, P., and Behrens, M., "Nanostructured Manganese Oxide Supported on Carbon Nanotubes for Electrocatalytic Water Splitting", ChemCatChem, 4, 851-862, (2012).
Ou Yang, S. P., The Electrocatalytic behavior of Methanol and Benzyl alcohol at Ni(tmdbta)n film Modified Electrode, Master's thesis, National University of Tainan, Tainan, (2004).
Pasta, M., Ruffo, R., Falletta, E., Mari, C. M., and Pina, C. D., "Alkaline glucose oxidation on nanostructured gold electrodes", Gold Bulletin, 43, 57-64, (2010).
Peng, H., Zhang, N., He, M., Chen, B., and Hu, B., "Simultaneous speciation analysis of inorganic arsenic, chromium and selenium in environmental waters by 3-(2-aminoethylamino) propyltrimethoxysilane modified multi-wall carbon nanotubes packed microcolumn solid phase extraction and ICP-MS", Talanta, 131, 266-272, (2015).
Quansah, R., Armah, F. A., Essumang, D. K., Luginaah, I., Clarke, E., Marfoh, K., Cobbina, S. J., Nketiah-Amponsah, E., Namujju, P. B., Obiri, S., and Dzodzomenyo, M., "Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis", Environmental Health Perspectives, 123, 412-421, (2015).
Ranjitha, V. R. and Rai, V. R., "Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity", 3 Biotech, 7, 299, (2017).
Roy, E., Patra, S., Madhuri, R., and Sharma, P. K., "Europium doped magnetic graphene oxide-MWCNT nanohybrid for estimation and removal of arsenate and arsenite from real water samples", Chemical Engineering Journal, 299, 244-254, (2016).
Salimi, A., Pourbahram, B., Mansouri-Majd, S., and Hallaj, R., "Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection", Electrochimica Acta, 156, 207-215, (2015).
Sarkar, B., Mandal, S., Tsang, Y. F., Kumar, P., Kim, K. H., and Ok, Y. S., "Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review", Science of The Total Environment, 612, 561-581, (2018).
Shih, M. W., Chin, C. J. M., and Yu, Y. L., "The role of oxygen-containing groups on the adsorption of bisphenol-A on multi-walled carbon nanotube modified by HNO3 and KOH", Process Safety and Environmental Protection, 112, 308-314, (2017).
Simm, A. O., Banks, C. E., and Compton, R. G., "Sonoelectroanalytical Detection of Ultra-Trace Arsenic", Electroanalysis, 17, 335-342, (2005).
Singh, R., Singh, S., Parihar, P., Singh, V. P., and Prasad, S. M., "Arsenic contamination, consequences and remediation techniques: A review", Ecotoxicology and Environmental Safety, 112, 247-270, (2015).
Smedley, P. L. and Kinniburgh, D. G., "A review of the source, behaviour and distribution of arsenic in natural waters", Applied Geochemistry, 17, 517-568, (2002).
Sultana, M., Mou, T. J., Sanyal, S. K., Diba, F., Mahmud, Z. H., Parvez, A. K., and Hossain, M. A., "Investigation of Arsenotrophic Microbiome in Arsenic-Affected Bangladesh Groundwater", Groundwater, 55, 736-746, (2017).
Sun, M. H., Huang, S. Z., Chen, L. H., Li, Y., Yang, X. Y., Yuan, Z. Y., and Su, B. L., "Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine", Chemical Society Reviews, 45, 3479-3563, (2016).
Tseng, C. H., Preparation of Conductive Carbon Nanotube Nanocomposites by Using Plasma Modification Technique, Doctoral dissertation, National Cheng Kung University, Tainan, (2009).
Wang, J. J., Yin, G. P., Zhang, J., Wang, Z. B., and Gao, Y. Z., "High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell", Electrochimica Acta, 52, 7042-7050, (2007).
Wei, J., Li, S.-S., Guo, Z., Chen, X., Liu, J.-H., and Huang, X.-J., "Adsorbent Assisted in Situ Electrocatalysis: An Ultra-Sensitive Detection of As(III) in Water at Fe3O4 Nanosphere Densely Decorated with Au Nanoparticles", Analytical Chemistry, 88, 1154-1161, (2016).
Wong-Ng, W., McMurdie, H. F., Hubbard, C. R., and Mighell, A. D., "JCPDS-ICDD Research Associateship (Cooperative Program with NBS/NIST)", Journal of Research of the National Institute of Standards and Technology, 106, 1013-1028, (2001).
Wu, J., Yang, M., Xiao, J., Fu, X., Jin, J., Li, L., Chang, W., and Xie, C., "Gold Nanoparticle Dropped Titania Microsphere Hybrids as an Enhanced Sensitive Material for Stripping Voltammetry Determination of As (III)", Journal of The Electrochemical Society, 160, B225-B230, (2013).
Wu, S., Zhao, Q., Zhou, L., and Zhang, Z., "Stripping Analysis of Trace Arsenic Based on the MnOx/AuNPs Composite Film Modified Electrode in Alkaline Media", Electroanalysis, 26, 1840-1849, (2014).
Xie, X. L., Mai, Y. W., and Zhou, X. P., "Dispersion and alignment of carbon nanotubes in polymer matrix: A review", Materials Science and Engineering: R: Reports, 49, 89-112, (2005).
Xiong, C., Li, T., Dang, A., Zhao, T., Li, H., and Lv, H., "Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode", Journal of Power Sources, 306, 602-610, (2016).
Yang, M., Chen, X., Jiang, T. J., Guo, Z., Liu, J. H., and Huang, X. J., "Electrochemical Detection of Trace Arsenic(III) by Nanocomposite of Nanorod-Like α-MnO2 Decorated with ∼5 nm Au Nanoparticles: Considering the Change of Arsenic Speciation", Analytical Chemistry, 88, 9720-9728, (2016).
Yang, S. H., Design, Fabrication and Electrochemical Impedance Spectroscopy for Microfuel Cells, Master's thesis, National Sun Yat-sen University, Kaohsiung, (2005).
Yang, Y. J. and Hu, S., "Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide", Electrochimica Acta, 55, 3471-3476, (2010).
Yao, Y., Zhang, L., Xu, J., Wang, X., Duan, X., and Wen, Y., "Rapid and sensitive stripping voltammetric analysis of methyl parathion in vegetable samples at carboxylic acid-functionalized SWCNTs–β-cyclodextrin modified electrode", Journal of Electroanalytical Chemistry, 713, 1-8, (2014).
Yeh, P. C., Electrochemical studies of carbon based nanocomposite materials modified electrodes for electroanalytical applications, Master's thesis, National Taipei University of Technology, Taipei, (2013).
Yesil, S. and Bayram, G., "Effect of carbon nanotube purification on the electrical and mechanical properties of poly(ethylene terephthalate) composites with carbon nanotubes in low concentration", Journal of Applied Polymer Science, 119, 3360-3371, (2011).
Yi, S., Sun, L., Lenaghan, S. C., Wang, Y., Chong, X., Zhang, Z., and Zhang, M., "One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties", RSC Advances, 3, 10139-10144, (2013).
Zhang, G., Qu, J., Liu, H., Liu, R., and Wu, R., "Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal", Water Research, 41, 1921-1928, (2007).
Zhang, Q., Xie, J., Yu, Y., Yang, J., and Lee, J. Y., "Tuning the Crystallinity of Au Nanoparticles", Small, 6, 523-527, (2010).
Zhou, S., Han, X., Fan, H., and Liu, Y., "Electrochemical Sensing toward Trace As(III) Based on Mesoporous MnFe2O4/Au Hybrid Nanospheres Modified Glass Carbon Electrode", Sensors, 16, 935, (2016).
Zhou, S. F., Han, X. J., Fan, H. L., Zhang, Q. X., and Liu, Y. Q., "Electrochemical detection of As(III) through mesoporous MnFe2O4 nanocrystal clusters by square wave stripping voltammetry", Electrochimica Acta, 174, 1160-1166, (2015).
胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 台北, (2011).
格里第、鲜祺振, 電極動力學, 財團法人徐氏基金會, 新北, (1996).
陳成裕、曾志明、石東生, "尿中TTCA電化學偵測技術研究", (IOSH91-A306), 行政院勞委會勞工安全衛生研究所, 新北, (2003).
電子全文 電子全文(網際網路公開日期:20230301)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔