(54.236.58.220) 您好!臺灣時間:2021/02/27 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱智豪
研究生(外文):Chih-Hao Chu
論文名稱:多壁奈米碳管表面電性與抑菌效果關聯性探討
論文名稱(外文):Association between surface charge and bactericidal effect of multi-walled carbon nanotubes
指導教授:林居慶
指導教授(外文):Chu-Ching Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:97
中文關鍵詞:多壁奈米碳管乙二胺官能基分散性帶電性微生物毒性
外文關鍵詞:Multi-walled carbon nanotubesEthylenediamineFunctional groupsDispersibilitySurface chargeMicrobial toxicity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
近年來奈米科技已被廣泛應用於各領域中,造就了許多固有工業更進一步的創新,因此被視為二十一世紀最重要的新興科技之一。然而奈米材料大規模的生產與使用,終將使其進入環境的機率增高,成為新一代的污染物。有鑑於實驗室先前的計畫觀察到經硝酸氧化的多壁奈米碳管雖有效的增加了碳管於水中的分散性,但此時碳管對於懸浮狀態的細菌所造成的毒性效果卻反而減弱,其成因推論是由於碳管與細菌彼此間的表面靜電斥力所帶來的效應,然而確切的原因為何尚待證實。爰此,為了進一步判斷顆粒的表面電性是否為影響奈米碳管抑菌效果的顯著因子,本研究同樣以多壁奈米碳管(multi-walled carbon nanotubes, MWCNTs)及大腸桿菌(E. coli)作為模式顆粒與模式生物。首先透過官能化的方式,使碳管分別具帶負電位較高的MWCNT-COOH (-27.70 mV)與表面電位較低之MWCNT-ETA (-3.00 mV)。FTIR與TGA的分析結果可判定兩類碳管表面特定官能基的存在。毒性試驗的結果顯示,由於碳管與菌體兩顆粒間的靜電作用影響,確實可使得表面電位較低之MWCNT-ETA與E. coli直接接觸的機率增高,進而造成毒性上升的趨勢;其次,MWCNT-COOH由於其自身分散性高,在受到(機械)外力的擾動下,依舊可因此而提高與E. coli 的接觸機率,並進而造成顯著的毒性表現。整體而言,顆粒的分散性與表面電位皆會左右碳管與微生物的接觸機率,而造成不同的毒性效果。此外,本研究的結果也顯示藉由探討奈米碳管與細菌細胞彼此間的交互作用,可進一步推論奈米材料的潛在環境風險。
In recent years, nanotechnology has been widely applied in various fields, leading to further innovations in the corresponding sector. As such, nanotechnology is considered one of the most important emerging technologies in the 21st century. However, the large-scale production and a wide range use of engineered nanomaterials will eventually increase the chance of these novel materials entering the environment and become a new generation of pollutants. In our previous study, it was observed that while nitric acid reflux of carbon nanotubes (CNTs) effectively increased the dispersion of CNTs in water, toxicity of suspended CNTs on planktonic bacteria was significantly reduced. This might be due to surface electrostatic repulsion between CNTs and bacterial cells. However, the exact cause behind this observation remains to confirm. Therefore, to determine whether the surface charge is a critical factor controlling the antibacterial effect of CNTs, multi-walled carbon nanotubes (MWCNTs) and E. coli were used as model CNTs and microorganism respectively in this study. Surface functionalization of MWCNTs resulted in carboxyl- (i.e., MWCNT-COOH) and amino-containing MWCNTs (i.e., MWCNT-ETA) that had surface potentials of -27.70 mV and -3.00 mV, respectively. FTIR and TGA analyses confirmed the success in CNT surface modification. Results of toxicity assays showed that formation of carboxamido- and amino-functional groups indeed significantly favored the contact of MWCNTs with E. coli cells and thus caused stronger bactericidal effect. Interestingly, when MWCNT-COOH was subject to disturbance of mechanical shacking, the chance of MWCNT-COOH in contact with E. coli increased, which in turn led to increased toxicity. Together, our results indicated that in addition to surface charge, dispersivity of MWCNTs may play an equally important role in determining the antibacterial activity of suspended MWCNTs to planktonic E. coli cells.
摘要 I
Abstract II
致謝 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 碳質材料 4
2.1.1 碳的特性 4
2.1.2 奈米碳管 7
2.2 奈米碳管的合成與改質 10
2.2.1 奈米碳管的合成 10
2.2.2 奈米碳管的改質與應用 14
2.3 奈米碳管於環境中的行為 18
2.4 奈米碳管與微生物之毒理機制 20
第三章 實驗方法 22
3.1 實驗材料與藥品 22
3.1.1 實驗材料 22
3.1.2 實驗藥品 22
3.2 實驗分析儀器 25
3.3 多壁奈米碳管的改質 28
3.3.1 酸氧化(純化)多壁奈米碳管 28
3.3.2 胺化多壁奈米碳管的製備 29
3.3.3 多壁奈米碳管表面電位之梯度置備 30
3.4 微生物毒性試驗 30
3.4.1 實驗培養基成分與配製 31
3.4.2 實驗用模式菌種 33
3.4.3 微生物毒性試驗之實驗設計 33
3.4.4 平板計數法 36
3.4.5 光學密度生長曲線法 36
第四章 結果與討論 37
4.1 多壁奈米碳管之特徵與特性 39
4.1.1 多壁奈米碳管之分散與絮凝行為 39
4.1.2 多壁奈米碳管之電荷與粒徑分析 43
4.1.3 多壁奈米碳管之電性與官能基關係 45
4.1.4 多壁奈米碳管之官能基分析 46
4.1.5 多壁奈米碳管之熱重損失分析 50
4.2 多壁奈米碳管之微生物毒性分析 54
4.2.1 微生物附著生長與碳管表面電位之毒性關聯 54
4.2.2 微生物懸浮生長與碳管表面電位之毒性關聯 58
4.2.3 碳管靜置實驗之微生物毒性分析 61
4.3 環境意義 65
第五章 結論與建議 67
5.1 結論 67
5.2 建議 68
參考文獻 69
附錄 84
Ahmed, F.; Santos, C. M.; Vergara, R. A.; Tria, M. C.; Advincula, R.;
Rodrigues, D. F., Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ Sci Technol 2012, 46 (3), 1804-10.
Ando, Y.; Zhao, X.; Hirahara, K.; Suenaga, K.; Bandow, S.; Iijima, S.,
Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chemical Physics Letters 2000, 323, 580-585.
Arias, L. R.; Yang, L., Inactivation of Bacterial Pathogens by Carbon Nanotubes in Suspensions. Langmuir 2009, 25, 3003-3012.
Bahr, J. L.; Tour, J. M., Covalent chemistry of single-wall carbon
nanotubes. Journal of Materials Chemistry 2002, 12 (7), 1952-1958.
Bai, Y.; Park, I. S.; Lee, S. J.; Wen, P. S.; Bae, T. S.; Lee, M. H., Effect of
AOT-assisted multi-walled carbon nanotubes on antibacterial activity. Colloids Surf B Biointerfaces 2012, 89, 101-7.
Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A., Carbon nanotubes—the route toward applications. Science 2002, 297, 787-792.
Berber, S.; Kwon, Y.-K.; Tománek, D., Unusually High Thermal Conductivity of Carbon Nanotubes. Physical Review Letters 2000, 84, 4613-4616.
Brady-Estevez, A. S.; Nguyen, T. H.; Gutierrez, L.; Elimelech, M., Impact
of solution chemistry on viral removal by a single-walled carbon nanotube
filter. Water Res 2010, 44 (13), 3773-80.
Broza, G.; Kwiatkowska, M.; Rosłaniec, Z.; Schulte, K., Processing and
assessment of poly(butylene terephthalate) nanocomposites reinforced
with oxidized single wall carbon nanotubes. Polymer 2005, 46 (16), 5860-
5867.
10. Carson, L.; Kelly-Brown, C.; Stewart, M.; Oki, A.; Regisford, G.; Luo, Z.;
Bakhmutov, V. I., Synthesis and characterization of chitosan-carbon
nanotube composites. Mater Lett 2009, 63 (6-7), 617-620.
11. Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H., Noncovalent Sidewall
Functionalization of Single-Walled Carbon Nanotubes for Protein
Immobilization. J. Am. Chem. Soc. 2001, 123, 3838-3839.
12. Chen, S.; Shen, W.; Wu, G.; Chen, D.; Jiang, M., A new approach to the
functionalization of single-walled carbon nanotubes with both alkyl and
carboxyl groups. Chemical Physics Letters 2005, 402 (4-6), 312-317.
13. Chen, X.; Farber, M.; Gao, Y.; Kulaots, I.; Suuberg, E. M.; Hurt, R. H.,
Mechanisms of surfactant adsorption on non-polar, air-oxidized and
ozone-treated carbon surfaces. Carbon 2003, 41 (8), 1489-1500.
14. Cho, W. S.; Cho, M.; Jeong, J.; Choi, M.; Cho, H. Y.; Han, B. S.; Kim, S.
H.; Kim, H. O.; Lim, Y. T.; Chung, B. H.; Jeong, J., Acute toxicity and
pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol
Appl Pharmacol 2009, 236 (1), 16-24.
15. Corredor, C.; Hou, W.-C.; Klein, S. A.; Moghadam, B. Y.; Goryll, M.;
Doudrick, K.; Westerhoff, P.; Posner, J. D., Disruption of model cell
membranes by carbon nanotubes. Carbon 2013, 60, 67-75.
16. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou,
A.; Kallitsis, I.; Galiotis, C., Chemical oxidation of multiwalled carbon
nanotubes. Carbon 2008, 46 (6), 833-840.
17. Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.;
Thio, T., Electrical conductivity of individual carbon nanotubes. Nature
1996, 382, 54-56.
18. El Badawy, A. M.; Silva, R. G.; Morris, B.; Scheckel, K. G.; Suidan, M.
T.; Tolaymat, T. M., Surface Charge-Dependent Toxicity of Silver
Nanoparticles. Environ Sci Technol 2011, 45, 283-287.
19. Falcao, E. H. L.; Wudl, F., Carbon allotropes: beyond graphite and
diamond. Journal of Chemical Technology & Biotechnology 2007, 82 (6),
524-531.
20. Fanning, P. E.; Vannice, M. A., A drigts study of the formation of surface
groups on carbon by oxidation. Carbon 1993, 31, 721-730.
21. Fortner, J. D.; Lyon, D. Y.; Sates, C. M.; Boyd, A. M.; Falkner, J. C.;
Hotze, E. M., C60 in Water: Nanocrystal Formation and Microbial
Response. Environ. Sci. Technol 2005, 39, 4307-4316.
22. Furtado, C. A.; Kim, U. J.; Gutierrez, H. R.; Pan, L.; Dickey, E. C.;
Eklund, P. C., Debundling and Dissolution of Single-Walled Carbon
Nanotubes in Amide Solvents. JACS 2004, 126, 6095-6105.
23. Gabriel, G.; Sauthier, G.; Fraxedas, J.; Moreno-Mañas, M.; Martínez, M.
T.; Miravitlles, C.; Casabó, J., Preparation and characterisation of single-
walled carbon nanotubes functionalised with amines. Carbon 2006, 44
(10), 1891-1897.
24. Ge, Y.; Priester, J. H.; Mortimer, M.; Chang, C. H.; Ji, Z.; Schimel, J. P.;
Holden, P. A., Long-Term Effects of Multiwalled Carbon Nanotubes and
Graphene on Microbial Communities in Dry Soil. Environ Sci Technol
2016, 50 (7), 3965-74.
25. Georgakilas, V.; Bourlinos, A.; Gournis, D.; Tsoufis, T.; Trapalis, C.;
Mateo-Alonso, A.; Prato, M., Multipurpose Organically Modified Carbon
Nanotubes: From Functionalization to Nanotube Composites. JACS 2008,
130, 8733-8740.
26. Gilbertson, L. M.; Albalghiti, E. M.; Fishman, Z. S.; Perreault, F.;
Corredor, C. ; Posner, J. D.; Elimelech, M.; Pfefferle, L. D.; Zimmerman,
J. B., Shape-Dependent Surface Reactivity and Antimicrobial Activity of
Nano-Cupric Oxide. Environ Sci Technol 2016, 50 (7), 3975-84.
27. Goodwin, D. G., Jr.; Marsh, K. M.; Sosa, I. B.; Payne, J. B.; Gorham, J.
M.; Bouwer, E. J.; Fairbrother, D. H., Interactions of microorganisms with
polymer nanocomposite surfaces containing oxidized carbon nanotubes.
Environ Sci Technol 2015, 49 (9), 5484-92.
28. Gorka, D. E.; Osterberg, J. S.; Gwin, C. A.; Colman, B. P.; Meyer, J. N.;
Bernhardt, E. S.; Gunsch, C. K.; DiGulio, R. T.; Liu, J., Reducing
Environmental Toxicity of Silver Nanoparticles through Shape Control.
Environ Sci Technol 2015, 49 (16), 10093-8.
29. Grüneis, A.; Rümmeli, M. H.; Kramberger, C.; Barreiro, A.; Pichler, T.;
Pfeiffer, R.; Kuzmany, H.; Gemming, T.; Büchner, B., High quality double
wall carbon nanotubes with a defined diameter distribution by chemical
vapor deposition from alcohol. Carbon 2006, 44 (15), 3177-3182.
30. Guo, L.; Morris, D. G.; Liu, X.; Vaslet, C.; Hurt, R. H.; Kane, A. B., Iron
Bioavailability and Redox Activity in Diverse Carbon Nanotube Samples.
Chem. Mater 2007, 19, 3472-3478.
31. Guo, Z.; Chen, Y.; Li, L.; Wang, X.; Haller, G. L.; Yang, Y., Carbon
nanotube-supported Pt-based bimetallic catalysts prepared by a
microwave-assisted polyol reduction method and their catalytic
applications in the selective hydrogenation. Journal of Catalysis 2010,
276 (2), 314-326.
32. Hafner, J. H.; Bronikowski, M. J.; Azamian, B. R.; Nikolaev, P.; Rinzler,
A. G.; Colbert, D. T.; Smith, K. A.; Smalley, R. E., Catalytic growth of
single-wall carbon nanotubes from metal particles. Chemical Physics
Letters 1998, 296, 195–202.
33. Ham, H. T.; Koo, C. M.; Kim, S. O.; Choi, Y. S.; Chung, I. J., Chemical
modification of carbon nanotubes and preparation of polystyrene/carbon
nanotubes composites. Macromolecular Research 2004, 12 (4), 384-390.
34. Hou, W. C.; Moghadam, B. Y.; Corredor, C.; Westerhoff, P.; Posner, J. D.,
Distribution of functionalized gold nanoparticles between water and lipid
bilayers as model cell membranes. Environ Sci Technol 2012, 46 (3),
1869-76.
35. Hyung, H.; Fortner, J. D.; Hughes, J. B.; Kim, J.-H., Natural Organic
Matter Stabilizes Carbon Nanotubes in the Aqueous Phase. Environ. Sci.
Technol 2007, 41, 179-184.
36. Hyung, H.; Kim, J.-H., Natural Organic Matter (NOM) Adsorption to
Multi-Walled Carbon Nanotubes Effect of NOM Characteristics and Water
Quality Parameters. Environ. Sci. Technol 2008, 42, 4416-4421.
37. Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; Lamyde la Chapelle,
M.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E., Large-scale production
of single-walled carbon nanotubes by the electric-arc technique. Nature
1997, 388, 756-758.
38. Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M., Antibacterial
Effects of Carbon Nanotubes Size Does Matter. Langmuir 2008, 24, 6409-
6413.
39. Kang, S.; Mauter, M. S.; Elimelech, M., Physicochemical Determinants of
Multiwalled Carbon Nanotube Bacterial Cytotoxicity. Environ Sci Technol
2008, 42, 7528-7534.
40. Kang, S.; Mauter, M. S.; Elimelech, M., Microbial Cytotoxicity of Carbon-
Based Nanomaterials: Implications for River Water and Wastewater
Effluent. Environ Sci Technol 2009, 43, 2648-2653.
41. Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M., Single-Walled
Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007,
23, 8670-8673.
42. Klaine, S. J.; Alvarez, P. J. J.; Batley, G. E.; Fernandes, T. F.; D., H. R.;
Lyon, D. Y.; Mahendra, S.; Mclaughlin, M. J.; Lead, J. R., Nanomaterials
in the Environment Behavior, Fate, Bioavailability, and Effects.
Environmental Toxicology and Chemistry 2008, 27, 1825-1851.
43. Klink, S.; Ventosa, E.; Xia, W.; La Mantia, F.; Muhler, M.; Schuhmann,
W., Tailoring of CNT surface oxygen groups by gas-phase oxidation and
its implications for lithium ion batteries. Electrochemistry
Communications 2012, 15 (1), 10-13.
44. Klumpp, C.; Kostarelos, K.; Prato, M.; Bianco, A., Functionalized carbon
nanotubes as emerging nanovectors for the delivery of therapeutics.
Biochim Biophys Acta 2006, 1758 (3), 404-12.
45. Kragulj, M.; Tričković, J.; Kukovecz, Á.; Jović, B.; Molnar, J.; Rončević,
S.; Kónya, Z.; Dalmacija, B., Adsorption of chlorinated phenols on
multiwalled carbon nanotubes. RSC Advances 2015, 5 (32), 24920-24929.
46. Kumar, N. A.; Kim, S. H.; Kim, J. S.; Kim, J. T.; Jeong, Y. T.,
Functionalization of Multi-Walled Carbon Nanotubes with Cysteamine for
the Construction of CNT/GOLD Nanoparticle Hybrid Nanostructures.
Surface Review and Letters 2009, 16, 487-492.
47. Kung, S.-C.; Hwang, K. C.; Lin, I. N., Oxygen and ozone oxidation-
enhanced field emission of carbon nanotubes. Applied Physics Letters
2002, 80 (25), 4819-4821.
48. Lee, J. H.; Rhee, K. Y.; Lee, J. H., Effects of moisture absorption and
surface modification using 3-aminopropyltriethoxysilane on the tensile
and fracture characteristics of MWCNT/epoxy nanocomposites. Applied
Surface Science 2010, 256 (24), 7658-7667.
49. Lee, J.-H.; Kathi, J.; Rhee, K. Y.; Lee, J. H., Wear properties of 3-
aminopropyltriethoxysilane-functionalized carbon nanotubes reinforced
ultra high molecular weight polyethylene nanocomposites. Polymer
Engineering & Science 2010, 50 (7), 1433-1439.
50. Li, C.; Wang, D.; Liang, T.; Wang, X.; Wu, J.; Hu, X.; Liang, J., Oxidation
of multiwalled carbon nanotubes by air: benefits for electric double layer
capacitors. Powder Technology 2004, 142 (2-3), 175-179.
51. Li, D.; Lyon, D. Y.; Li, Q.; Alvarez, P. J. J., Effect of Sorption and Aquatic
Natural Organic Matter on the Antibacterial Activity of a Fullerene water
Suspension. Environmental Toxicology and Chemistry 2008, 27, 1888-
1894.
52. Li, L.-x.; Li, F., The effect of carbonyl, carboxyl and hydroxyl groups on
the capacitance of carbon nanotubes. New Carbon Materials 2011, 26 (3),
224-228.
53. Li, Q.; Mahendra, S.; Lyon, D. Y.; Brunet, L.; Liga, M. V.; Li, D.; Alvarez,
P. J., Antimicrobial nanomaterials for water disinfection and microbial
control: potential applications and implications. Water Res 2008, 42 (18),
4591-602.
54. Li, Z.; Greden, K.; Alvarez, P. J. J.; Gregory, K. B.; Lowry, G. V.,
Adsorbed polymer and NOM limits adhesion and toxicity of nano scale
zerovalent iron to E. coli. Environ. Sci. Technol 2010, 44, 3462–3467.
55. Lilly, M.; Dong, X.; McCoy, E.; Yang, L., Inactivation of Bacillus
anthracis spores by single-walled carbon nanotubes coupled with
oxidizing antimicrobial chemicals. Environ Sci Technol 2012, 46 (24),
13417-24.
56. Lin, Y.; Zhou, B.; Shiral Fernando, K. A.; Liu, P.; Allard, L. F.; Sun, Y.-P.,
Polymeric Carbon Nanocomposites from Carbon Nanotubes
Functionalized with Matrix Polymer. Macromolecules 2003, 36, 7199-
7204.
57. Liu, C.; Cong, H. T.; Li, F.; Tan, P. H.; Cheng, H. M.; Lu, K.; Zhou, B. L.,
Semi-continuous synthesis of single-walled carbon nanotubes by a
hydrogen arc discharge method. Carbon 1999, 37 (11), 1865-1868.
58. Liu, S.; Wei, L.; Hao, L.; Fang, N.; Chang, M. W.; Xu, R.; Yang, Y.; Chen,
Y., Sharper and Faster “Nano Darts” Kill More Bacteria: A Study of
Ntibacterial Activity of Individually Dispersed Pristine Single-Walled
Carbon Nanotube. ACS Nano 2009, 3, 3891-3902.
59. Lyon, D. Y.; D., F. J.; Sayes, C. M.; Colvin, V. L.; Hughes, J. B., Bacterial
Cell Association and Antimicrobial Activity of a C60 Water Suspension.
Environmental Toxicology and Chemistry 2005, 24, 2757-2762.
60. Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M., Low-
temperature synthesis of high-purity single-walled
carbon nanotubes from alcohol. Chemical Physics Letters 2002, 360,
229-234.
61. Mauter, M. S.; Elimelech, M., Environmental Applications of Carbon-
Based Nanomaterials. Environ. Sci. Technol 2008, 42 (16), 5843-5849.
62. Mohanty, B.; Verma, A. K.; Claesson, P.; Bohidar, H. B., Physical and anti-
microbial characteristics of carbon nanoparticles prepared from lamp soot.
Nanotechnology 2007, 18 (44), 445102.
63. Moniruzzaman, M.; Winey, K. I., Polymer Nanocomposites Containing
Carbon Nanotubes. Macromolecules 2006, 39, 5194-5205.
64. Narayan, R. J.; Berry, C. J.; Brigmon, R. L., Structural and biological
properties of carbon nanotube composite films. Materials Science and
Engineering: B 2005, 123 (2), 123-129.
65. Nasibulin, A. G.; Moisala, A.; Jiang, H.; Kauppinen, E. I., Carbon
nanotube synthesis from alcohols by a novel aerosol method. Journal of
Nanoparticle Research 2006, 8 (3-4), 465-475.
66. Odom, T. W.; Huang, J.-L.; Kim, P.; M. Lieber, C., Atomic structure and
electronic properties of single-walled carbon nanotube. Nature 1998, 391,
62-64.
67. Pan, B.; Xing, B., Adsorption mechanisms of organic chemicals on carbon
nanotubes. Environmental Science & Technology 2008, 42, 9005-9013.
68. Pasquini, L. M.; Hashmi, S. M.; Sommer, T. J.; Elimelech, M.;
Zimmerman, J. B., Impact of surface functionalization on bacterial
cytotoxicity of single-walled carbon nanotubes. Environ Sci Technol 2012,
46 (11), 6297-305.
69. Pasquini, L. M.; Sekol, R. C.; Taylor, A. D.; Pfefferle, L. D.; Zimmerman,
J. B., Realizing comparable oxidative and cytotoxic potential of single-
and multiwalled carbon nanotubes through annealing. Environ Sci Technol
2013, 47 (15), 8775-83.
70. Plata, D. L.; Gschwend, P. M.; Reddy, C. M., Industrially synthesized
single-walled carbon nanotubes: compositional data for users,
environmental risk assessments, and source apportionment.
Nanotechnology 2008, 19 (18), 185706.
71. Popov, V., Carbon nanotubes: properties and application. Materials
Science and Engineering: R: Reports 2004, 43 (3), 61-102.
72. Pradhan, B. K.; Sandle, N. K., Effect of different oxidizing agent
treatments on the surface properties of activated carbons. Carbon 1999,
37, 1323-1332.
73. Qian, W.; Liu, T.; Wei, F.; Wang, Z.; Li, Y., Enhanced production of carbon
nanotubes: combination of catalyst reduction and methane decomposition.
Applied Catalysis A: General 2004, 258 (1), 121-124.
74. Rajavel, K.; Gomathi, R.; Manian, S.; Rajendra Kumar, R. T., In vitro
bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell
damage edges over direct physical puncturing. Langmuir 2014, 30 (2),
592-601.
75. Rama, a., T.; Fisher, F. T.; Ruoff, R. S.; Brinson, L. C., Amino-
Functionalized Carbon Nanotubes for Binding to Polymers and Biological
Systems. Chem.Mater 2005, 17, 1290-1295.
76. Salen, N. B.; Pfefferle, L. D.; Elimelech, M., Aggregation Kinetics of
Multiwalled Carbon Nanotubes in Aquatic Systems Measurements and
Environmental Implications. Environ Sci Technol 2008, 42, 7963-7969.
77. Schiffman, J. D.; Elimelech, M., Antibacterial activity of electrospun
polymer mats with incorporated narrow diameter single-walled carbon
nanotubes. ACS Appl Mater Interfaces 2011, 3 (2), 462-8.
78. Shen, M.; Wang, S. H.; Shi, X.; Chen, X.; Huang, Q.; Petersen, E. J.;
Pinto, R. A.; Baker, J. R.; Weber, W. J., Polyethyleneimine-Mediated
Functionalization of Multiwalled Carbon Nanotubes: Synthesis,
Characterization, and In Vitro oxicity Assay. J. Phys. Chem 2009, 113,
3150-3156.
79. Shih, Y. H.; Li, M. S., Adsorption of selected volatile organic vapors on
multiwall carbon nanotubes. J Hazard Mater 2008, 154 (1-3), 21-8.
80. Stein, A.; Wang, Z.; Fierke, M. A., Functionalization of Porous Carbon
Materials with Designed Pore Architecture. Advanced Materials 2009, 21
(3), 265-293.
81. Su, F.; Lu, C.; Chen, H. S., Adsorption, desorption, and thermodynamic
studies of CO2 with high-amine-loaded multiwalled carbon nanotubes.
Langmuir 2011, 27 (13), 8090-8.
82. Su, F.; Lu, C.; Chung, A.-J.; Liao, C.-H., CO2 capture with amine-loaded
carbon nanotubes via a dual-column temperature/vacuum swing
adsorption. Applied Energy 2014, 113, 706-712.
83. Sun, T. Y.; Gottschalk, F.; Hungerbuhler, K.; Nowack, B., Comprehensive
probabilistic modelling of environmental emissions of engineered
nanomaterials. Environ Pollut 2014, 185, 69-76.
84. Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W., Functionalized Carbon Nanotubes 
Properties and Applications. ACC. Chem 2002, 35, 1096-1104.
85. Sun, Y.-P.; Huang, W.; Lin, Y.; Fu, K.; Kitaygorodskiy, A.; Riddle, L. A.;
Yu, Y. J.; Carroll, D. L., Soluble Dendron-Functionalized Carbon
Nanotubes: Preparation, Characterization, and Properties. Chem. Mater
2001, 13, 2864-2869.
86. Sundaram, S.; Annamalai, S. K., Selective immobilization of
hydroquinone on carbon nanotube modified electrode via phenol electro-
oxidation method and its hydrazine electro-catalysis and Escherichia coli
antibacterial activity. Electrochimica Acta 2012, 62, 207-217.
87. Tan, H. T.; Chen, Y.; Zhou, C.; Jia, X.; Zhu, J.; Chen, J.; Rui, X.; Yan, Q.;
Yang, Y., Palladium nanoparticles supported on manganese oxide–CNT
composites for solvent-free aerobic oxidation of alcohols: Tuning the
properties of Pd active sites using MnOx. Applied Catalysis B:
Environmental 2012, 119-120, 166-174.
88. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee,
Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.;
Tomanek, D.; Fischer, J. E.; Smalley, R. E., Crystalline Ropes of Metallic
Carbon Nanotubes. Science 1996, 273, 483-487.
89. Tiraferri, A.; Vecitis, C. D.; Elimelech, M., Covalent binding of single-
walled carbon nanotubes to polyamide membranes for antimicrobial
surface properties. ACS Appl Mater Interfaces 2011, 3 (8), 2869-77.
90. Vecitis, C. D.; Zodrow, K. R.; Kang, S.; Elimelech, M., Electronic-
Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon
Nanotubes. ACS Nano 2010, 4, 5471-5479.
91. Wang, Y.; Shi, Z.; Yin, J., Unzipped Multiwalled Carbon Nanotubes for
Mechanical Reinforcement of Polymer. J. Phys. Chem 2010, 114, 19621-
19628.
92. Yan, Y.; Miao, J.; Yang, Z.; Xiao, F. X.; Yang, H. B.; Liu, B.; Yang, Y.,
Carbon nanotube catalysts: recent advances in synthesis, characterization
and applications. Chem Soc Rev 2015, 44 (10), 3295-346.
93. Yang, D.-Q.; Rochette, J.-F.; Sacher, E., Spectroscopic Evidence for π-π
Interaction between Poly(diallyl dimethylammonium) Chloride and
Multiwalled Carbon Nanotubes. J. Phys. Chem 2005, 109, 4481-4484.
94. YANG, H.-P.; ZHANG, Y.-C.; FU, X.-F.; SONG, S.-S.; WU, J.-M.,
Surface Modification of CNTs and Improved Photocatalytic Activity of
TiO2-CNTs Heterojunction. Acta Phys. -Chim. Sin. 2013, 29, 1327-1335.
95. Yudasaka, M.; Komatsu, T.; Ichihashi, T.; Iijima, S., Single-wall carbon
nanotube formation by laser ablation using double-targets of carbon and
metal. Chemical Physics Letters 1997, 278, 102-106.
96. Zardini, H. Z.; Amiri, A.; Shanbedi, M.; Maghrebi, M.; Baniadam, M.,
Enhanced antibacterial activity of amino acids-functionalized multi walled
carbon anotubes by a simple method. Colloids Surf B Biointerfaces 2012,
92, 196-202.
97. Zhu, B.; Xia, X.; Xia, N.; Zhang, S.; Guo, X., Modification of Fatty acids
in membranes of bacteria: implication for an adaptive mechanism to the
toxicity of carbon nanotubes. Environ Sci Technol 2014, 48 (7), 4086-95.
Kettler, K.; Veltman, K.; van de Meent, D.; van Wezel, A.; Hendriks, A. J.,
Cellular uptake of nanoparticles as determined by particle properties,
experimental conditions, and cell type. Environ Toxicol Chem 2014, 33
(3), 481-92.
99. Khan, I. A.; Berge, N. D.; Sabo-Attwood, T.; Ferguson, P. L.; Saleh, N. B.,
Single-walled carbon nanotube transport in representative municipal solid
waste landfill conditions. Environ Sci Technol 2013, 47 (15), 8425-33.
100. Liu, Y.; Liggio, J.; Li, S. M.; Breznan, D.; Vincent, R.; Thomson, E. M.;
Kumarathasan, P.; Das, D.; Abbatt, J.; Antinolo, M.; Russell, L., Chemical and toxicological evolution of carbon nanotubes during atmospherically relevant aging processes. Environ Sci Technol 2015, 49 (5), 2806-14.
101. O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano,
M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.;
Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E., Band Gap
Fluorescence from Individual Single-Walled Carbon Nanotubes. Science
2002, 297, 593-596.
Qu, X.; Hwang, Y. S.; Alvarez, p. J. J.; Bouchard, D.; Li, Q., UV
Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene
(nC60) Nanoparticles. Environ Sci Technol 2010, 44, 7821-7826.
Smith, B.; Wepasnick, K.; Schrote, K. E.; Cho, H. H.; Ball, W. P.;
Fairbrother, D. H., Influence of surface oxides on the colloidal stability of
multi-walled carbon nanotubes: a structure-property relationship.
Langmuir 2009, 25 (17), 9767-76.
104. 吳瑋羚. 奈米碳管在鄰苯二甲酸酯類溶液與腐植酸溶液中之分散與絮 凝.,碩士論文,國立中央大學環境工程研究所, 2012.
105. 李偉立 2010年諾貝爾物理獎—碳奈米結構的美; 2011; pp 54-59.
106. 張雅雯. 運用金奈米粒子/單壁奈米碳管複合材料修飾電極進行砷
(Ⅲ)之伏安法.,碩士論文,國立中央大學環境工程研究所, 2011..
107. 許育瑄. 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性 潛勢.,碩士論文,國立中央大學環境工程研究所, 2015.
108. 郭絢媛. 單壁奈米碳管/聚乳酸奈米複合材料製備及其性質之研究., 碩士論文,國立勤益科技大學化工與材料工程系, 2007.
109. 齊慕凡. 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探 討.,碩士論文,國立中央大學環境工程研究所, 2014.
110.成會明. 奈米碳管.,五南圖書出版社, 2004
111. 韋進全;張先峰;王昆林.奈米碳管巨觀體-物理化學特性與應用., 五南圖書出版社, 2009.
112. 蔡宏營. 奈米科技概論與應用.,五南圖書出版社, 2013
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔