(54.236.62.49) 您好!臺灣時間:2021/03/06 11:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅弘駿
研究生(外文):HONG-JYUN LUO
論文名稱:利用二氧化鈦/活性碳電極進行電容去離子處理鄰苯二甲酸氫鉀之研究
論文名稱(外文):The Removal of Potassium Hydrogen Phthalate via Capacitive Deionization Using TiO2/AC Composite Electrode
指導教授:秦靜如秦靜如引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:95
中文關鍵詞:電吸附溶膠凝膠法有機物
外文關鍵詞:electrosorptionsol-gel methodorganic compound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:55
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
廢污水的有機污染主要來自塑料、染料、農藥及食品加工業,其對環境與生態具有一定程度之危害,包括降低水中溶氧、產生臭味等等。
本研究是製備活性碳電極並透過電容去離子實驗從水溶液中去除有機化合物(鄰苯二甲酸氫鉀,KHP)。除此之外,探討流速、初始濃度和施加電壓對電容去離子的脫鹽性能的影響。另一方面,採用溶膠凝膠法製備二氧化鈦/活性碳複合式電極,並進一步探討了添加二氧化鈦是否能提高CDI脫鹽效率。利用pseudo-first-order、pseudo-second-order、Elovich 和intra-particle diffusion四種動力吸附模式來對活性碳電吸附KHP進行模擬。電極材料經由特性分析的結果顯示中孔比均大於80%,說明中孔在本研究中起著重要作用。透過XRD分析可以知道在500℃高溫鍛燒下製備了最佳強度的銳鈦礦結晶。由活性碳電極的電吸附結果得知KHP在流速60 ml/min,初始濃度50 ppm下可以達到較優異的電吸附效果。活性碳電吸附磷酸鹽類的動力學模式符合pseudo-second-order模式。
10wt.%的二氧化鈦/活性碳複合式電極較AC電極具有更好的去除KHP效果,且吸附循環性能顯示10wt%的二氧化鈦/活性碳複合式電極較AC電極具有更好的耐用性和穩定性。
The sources of organic pollution in the environment mainly include the wastewater from food factories, petrochemicals, pesticides, plastics, dyes, and etc. The impact of organic compounds for environmental, including the decline of dissolved oxygen in aquaculture, difficult to resolve in water and creature, and etc.
To prepare of activated carbon electrode to remove organic compound (potassium hydrogen phthalate, KHP) via CDI experiment from aqueous solutions. On the other hand, the influences of flow rate, initial concentration and applied voltage are investigated. TiO2/AC composite powder was prepared with the sol–gel method and further discuss about the addition of TiO2 whether enhance CDI desalination efficiency than the carbon electrode. Four kinetic models, including pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models, were employed to fit the electrosorption kinetic of KHP. All the mesopore ratios of electrode material are higher than 80%, which indicate that the mesopore play an important role in this study. From XRD analysis of the TiO2/AC composite electrode indicates that can obtain a good anatase crystalline by the sol-gel method and the optimum anatase crystal strength was prepared at the 500℃. It is possible to know from the CDI experiment that the best operating conditions of AC electrode for removing KHP were the flow rate of 60 ml/min and the initial concentration of 50 ppm. The adsorption kinetics could be described by the pseudo-second-order model.
The 10 wt.% TiO2/AC composite electrode has better removal amount of KHP than the AC electrode, which means the addition of titanium dioxide has the effect of improving the activated carbon. In addition, the adsorption cycle performance of CDI indicates that 10 wt.% TiO2/AC composite electrode has better durability and stability than AC electrode.
ABSTRACT II
摘要 IV
致謝 V
CONTENT VI
FIGURES VIII
TABLES IX
CHAPTER I INTRODUCTION 1
1.1. General Background Information 1
1.2. Objectives 3
CHAPTER II LITERATURE REVIEW 5
2.1 Capacitive deionization (CDI) 5
2.1.1 Theory of capacitive deionization 5
2.1.2 Theory and development of electric double layer 6
2.1.3 Electric double layer overlap 9
2.2 Factors affecting of capacitive deionization 10
2.2.1. Electrode materials 10
2.2.2. Factors affecting of electrosorption 13
2.3 TiO2/AC composite carbon materials 15
2.3.1 TiO2 structural characteristics 16
2.3.2 Preparation of TiO2 by sol-gel method 19
2.3.3 Application of TiO2/AC composites materials in CDI 22
CHAPTER III MATERIALS AND METHODS 26
3.1. Preparation of electrodes 26
3.1.1 Purification of AC 26
3.1.2 Preparation of TiO2/AC composite 27
3.1.3 Preparation of AC and TiO2/AC electrode 29
3.2. Characterization of material 31
3.3. Capacitive deionization system 34
3.4. Analysis of potassium hydrogen phthalate (KHP) 36
3.5. Data Analysis 37
3.5.1. Experimental calculation 37
3.5.2. Kinetic model 38
3.6. Hydroxyl radical (•OH) detection method 39
CHAPTER Ⅳ RESULTS AND DISCUSSION 41
4.1. Characteristics of electrode 41
4.1.1. SEM and EDS of electrode materials 41
4.1.2. Specific surface area and pore size distribution of electrode material 44
4.1.3. XRD analysis of TiO2/AC composite materials 47
4.1.4. Surface functional groups on electrode material 48
4.1.5. Electrochemical properties of AC and TiO2/AC electrodes 51
4.2. Removal of KHP by AC electrode in CDI 57
4.2.1. Effects of flow rate on removal of KHP 57
4.2.2. Effects of initial concentration on removal of KHP 58
4.2.3. Kinetics of KHP electrosorption 61
4.3. Removal of KHP by TiO2/AC electrode 65
4.3.1. Effects of the Ti content on removal of KHP 65
4.3.2. Effects of voltage on removal of KHP 66
4.4. Removal mechanisms of KHP by TiO2/AC electrode in CDI 68
4.4.1. Regeneration of electrodes 68
4.4.2. Non-capacitive adsorption and capacitive adsorption of KHP 69
4.4.3. Electro oxidation via hydroxyl radical (•OH) 70
4.4.4. Characteristics of the electrode after electrosorption 72
CHAPTER V CONCLUSION AND SUGGESTION 74
5.1. Conclusion 74
5.2. Suggestion 75
APPENDIX 76
REFERENCES 78
AlMarzooqi, F.A., Al Ghaferi, A.A., Saadat, I., and Hilal, N.,"Application of capacitive deionisation in water desalination: a review", Desalination, 342, 3-15(2014).
Carp, O., Huisman, C.L., and Reller, A.,"Photoinduced reactivity of titanium dioxide", Progress in solid state chemistry, 32, 33-177(2004).
Chang, L.M., Duan, X.Y., and Liu, W.,"Preparation and electrosorption desalination performance of activated carbon electrode with titania", Desalination, 270, 285-290(2011).
Dai, K., Shi, L., Zhang, D., and Fang, J.,"NaCl adsorption in multi-walled carbon nanotube/active carbon combination electrode", Chemical Engineering Science, 61, 428-433(2006).
Diebold, U.,"The surface science of titanium dioxide", Surface science reports, 48, 53-229(2003).
Doeuff, S., Henry, M., Sanchez, C., and Livage, J.,"Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid", Journal of Non-crystalline solids, 89, 206-216(1987).
Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F.,"Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes", Journal of the Electrochemical Society, 143, 159-169(1996).
Foo, K., and Hameed, B.,"A short review of activated carbon assisted electrosorption process: an overview, current stage and future prospects", Journal of hazardous materials, 170, 552-559(2009).
Gotić, M., Ivanda, M., Sekulić, A., Musić, S., Popović, S., Turković, A., and Furić, K.,"Microstructure of nanosized TiO2 obtained by sol-gel synthesis", Materials Letters, 28, 225-229(1996).
Hague, D.C., and Mayo, M.J.,"Controlling crystallinity during processing of nanocrystalline titania", Journal of the American Ceramic Society, 77, 1957-1960(1994).
Huai, Y., Hu, X., Lin, Z., Deng, Z., and Suo, J.,"Preparation of nano-TiO2/activated carbon composite and its electrochemical characteristics in non-aqueous electrolyte", Materials Chemistry and Physics, 113, 962-966(2009).
Huang, S.-Y., Fan, C.-S., and Hou, C.-H.,"Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization", Journal of hazardous materials, 278, 8-15(2014).
Huang, W., Zhang, Y., Bao, S., and Song, S.,"Desalination by capacitive deionization with carbon-based materials as electrode: a review", Surface Review and Letters, 20, 1330003(2013).
Huang, Z.-H., Yang, Z., Kang, F., and Inagaki, M.,"Carbon electrodes for capacitive deionization", Journal of Materials Chemistry A, 5, 470-496(2017).
Joseph, N.T., Chinonye, O.E., Philomena, I.K., Christian, A.C., and Elijah, O.C.,"ISOTHERM AND KINETIC MODELING OF ADSORPTION OF DYESTUFFS ONTO KOLA NUT (Cola acuminata) SHELL ACTIVATED CARBON", Journal of Chemical Technology & Metallurgy, 51, (2016).
Kim, C., Lee, J., Kim, S., and Yoon, J.,"TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization", Desalination, 342, 70-74(2014).
Kim, Y.-J., and Choi, J.-H.,"Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane", Separation and Purification Technology, 71, 70-75(2010).
Kitazumi, Y., Shirai, O., Yamamoto, M., and Kano, K.,"Numerical simulation of diffuse double layer around microporous electrodes based on the Poisson–Boltzmann equation", Electrochimica Acta, 112, 171-175(2013).
Kontos, A., Kontos, A., Tsoukleris, D., Vlachos, G., and Falaras, P.,"Superhydrophilicity and photocatalytic property of nanocrystalline titania sol–gel films", Thin Solid Films, 515, 7370-7375(2007).
Li, D., Müller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G.,"Processable aqueous dispersions of graphene nanosheets", Nature nanotechnology, 3, 101(2008a).
Li, H., Gao, Y., Pan, L., Zhang, Y., Chen, Y., and Sun, Z.,"Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes", Water research, 42, 4923-4928(2008b).
Li, H., Zou, L., Pan, L., and Sun, Z.,"Novel graphene-like electrodes for capacitive deionization", Environmental science & technology, 44, 8692-8697(2010).
Liang, H., Chen, F., Li, R., Wang, L., and Deng, Z.,"Electrochemical study of activated carbon-semiconducting oxide composites as electrode materials of double-layer capacitors", Electrochimica Acta, 49, 3463-3467(2004).
Lin, C., Ritter, J.A., and Popov, B.N.,"Correlation of Double‐Layer Capacitance with the Pore Structure of Sol‐Gel Derived Carbon Xerogels", Journal of the Electrochemical Society, 146, 3639-3643(1999).
Liu, P.-I., Chung, L.-C., Ho, C.-H., Shao, H., Liang, T.-M., Horng, R.-Y., Chang, M.-C., and Ma, C.-C.M.,"Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method", Journal of colloid and interface science, 446, 352-358(2015a).
Liu, P.-I., Chung, L.-C., Shao, H., Liang, T.-M., Horng, R.-Y., Ma, C.-C.M., and Chang, M.-C.,"Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization", Electrochimica Acta, 96, 173-179(2013).
Liu, R., Liu, E., Ding, R., Liu, K., Teng, Y., Luo, Z., Li, Z., Hu, T., and Liu, T.,"Facile in-situ redox synthesis of hierarchical porous activated carbon@ MnO2 core/shell nanocomposite for supercapacitors", Ceramics International, 41, 12734-12741(2015b).
Liu, Y., Nie, C., Liu, X., Xu, X., Sun, Z., and Pan, L.,"Review on carbon-based composite materials for capacitive deionization", Rsc Advances, 5, 15205-15225(2015c).
Livage, J., Henry, M., and Sanchez, C.,"Sol-gel chemistry of transition metal oxides", Progress in solid state chemistry, 18, 259-341(1988).
Mossad, M., and Zou, L.,"Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts", Journal of hazardous materials, 244, 387-393(2013).
Oren, Y.,"Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review)", Desalination, 228, 10-29(2008).
Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J., Keesman, K., Kaskel, S., Biesheuvel, P., and Presser, V.,"Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization", Energy & Environmental Science, 6, 3700-3712(2013a).
Porada, S., Zhao, R., Van Der Wal, A., Presser, V., and Biesheuvel, P.,"Review on the science and technology of water desalination by capacitive deionization", Progress in Materials Science, 58, 1388-1442(2013b).
Rasines, G., Lavela, P., Macias, C., Zafra, M., Tirado, J., and Ania, C.,"Mesoporous carbon black-aerogel composites with optimized properties for the electro-assisted removal of sodium chloride from brackish water", Journal of Electroanalytical Chemistry, 741, 42-50(2015).
Ryoo, M.-W., and Seo, G.,"Improvement in capacitive deionization function of activated carbon cloth by titania modification", Water Research, 37, 1527-1534(2003).
Seo, M.-K., and Park, S.-J.,"Effect of nanosize titanium oxide on electrochemical characteristics of activated carbon electrodes", Current Applied Physics, 10, 391-394(2010).
Seo, S.-J., Jeon, H., Lee, J.K., Kim, G.-Y., Park, D., Nojima, H., Lee, J., and Moon, S.-H.,"Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications", Water research, 44, 2267-2275(2010).
Shen, C.-Y.,"磁性二氧化鈦複合顆粒的製備和特性分析",中央大學環境工程研究所學位論文,中壢(2009).
Turchi, C.S., and Ollis, D.F.,"Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack", Journal of catalysis, 122, 178-192(1990).
Wang, C., Song, H., Zhang, Q., Wang, B., and Li, A.,"Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration", Desalination, 365, 407-415(2015).
Wang, X., Li, M., Chen, Y., Cheng, R., Huang, S., Pan, L., and Sun, Z.,"Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes", Applied Physics Letters, 89, 053127(2006).
Welgemoed, T., and Schutte, C.,"Capacitive deionization technology™: an alternative desalination solution", Desalination, 183, 327-340(2005).
Yan, C., Zou, L., and Short, R.,"Polyaniline-modified activated carbon electrodes for capacitive deionisation", Desalination, 333, 101-106(2014).
Yang, C.-M., Choi, W.-H., Na, B.-K., Cho, B.W., and Cho, W.I.,"Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes", Desalination, 174, 125-133(2005).
Yang, J., Mei, S., and Ferreira, J.M.,"Hydrothermal synthesis of nanosized titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions", Journal of the American Ceramic Society, 83, 1361-1368(2000).
Zhang, L.L., and Zhao, X.,"Carbon-based materials as supercapacitor electrodes", Chemical Society Reviews, 38, 2520-2531(2009).
李岳青."利用碳氣凝膠紙對硝酸根離子進行電容去離子之研究",中央大學環境工程研究所學位論文,中壢(2015).
李明翰."碳氣凝膠電容系統對水中重金屬離子競爭吸附之研究; Competitive Electrosorption of Metal Ions by Carbon Aerogel",中央大學環境工程研究所學位論文,中壢(2009).
林弘仁."製備活性碳電極於電容去離子技術之應用",東海大學環境科學與工程學系研究所學位論文,台中(2012).
許琇茹."利用碳氣凝膠紙電容吸附處理水中銨離子之研究; The removal of ammonium ion via the capacitive deionization using the carbon aerogel electrodes",中央大學環境工程研究所學位論文,中壢(2016).
陳凱欣."以溶膠凝膠法製備 MWCNTs/TiO2 及其光催化特性; Photocatalytic activity of multi-walled carbon nanotube supported TiO2 photocatalyst by sol-gel method",中央大學環境工程研究所學位論文,中壢(2013).
陳顯."多壁奈米碳管對結晶紫及鹼性紅 9 的吸附及脫附研究; Adsorption and Desorption of Crystal Violet and Basic Red 9 by Multiwalled Carbon Nanotubes",中央大學環境工程研究所學位論文,中壢(2016).
鄭為元."無機鹽類在碳氣凝膠電容去離子系統中之競爭吸附; A study of competitive adsorption of inorganic salts by carbon aerogel-based capacitive deionization system",中央大學環境工程研究所學位論文,中壢(2016).
電子全文 電子全文(網際網路公開日期:20230731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔