(3.237.178.91) 您好!臺灣時間:2021/03/04 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐明康
研究生(外文):Minh-Khang Tu
論文名稱:越南胡志明市氣膠化學成份 與污染來源推估
論文名稱(外文):The study on chemical characterization and contributing sources of atmospheric aerosol in Ho Chi Minh City, Vietnam
指導教授:李崇德李崇德引用關係
指導教授(外文):Chung-Te Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:107
中文關鍵詞:PM2.5PM10都市氣膠氣膠化學成份胡志明市
外文關鍵詞:PM2.5PM10urban aerosolaerosol chemical characterizationHo Chi Minh City
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文於2017年1月9日至2017年2月14日在越南胡志明市,採集和分析PM2.5與PM10,研究越南都會區PM2.5 與PM10化學成份以及推估可能污染源, PM2.5與PM10樣本使用稱重方法來分析質量濃度,離子層析儀分析水溶性無機離子和碳分析儀器分析碳成份。研究結果顯示PM2.5與PM10平均質量濃度是31.8 µg m-3 和 65.8 µg m-3,碳成份占PM2.5、PM10是41%和14%,水溶性無機離子占PM2.5、PM10是26%和21%。本研究使用正矩陣因子法(Positive Matrix Factorization - PMF)推估貢獻因子(污染來源),結果顯示有六種污染來源分別是二次硫酸(占PM2.5 14%, PM10 8%),汽油車(占PM2.5 21%, PM10 12%),二次硝酸(占PM2.5 16%, PM10 11%),建設活動(占PM2.5 5%, PM10 7%),海鹽和塵土(占PM2.5 4%, PM10 5%),農廢燃燒(占PM2.5 8%, PM10 8%)。最後使用條件機率函數(Conditional Probability Function - CPF)結合風向資料,推估當地污染源來向。
Atmospheric aerosols were collected from 9 January to 14 February 2017 in the urban area of Ho Chi Minh City (HCMC), Vietnam. Aerosol mass concentrations, carbonaceous contents, and water-soluble inorganic ions (WSIIs) of PM2.5 and PM10 were determined by gravimetrical weighing, thermal-optical reflectance method, and ion chromatography, respectively. The average mass concentration of PM2.5 and PM10 during the sampling period were 31.8 µg m-3 and 65.8 µg m-3, respectively. A mong various components, carbonaceous contents accounted for 41% and 24% of PM2.5 and PM10 mass, respectively. In contrast, WSIIs contributed 26% and 21% of PM2.5 and PM10 mass, respectively. In this study, positive matrix factorization (PMF) was used to investigate major contributing sources of PM2.5 and PM10 in HCMC. Six sources were identified from PMF modeling including secondary sulfate (14% of PM2.5, 8% of PM10), gasoline vehicles (21% of PM2.5, 12% of PM10), secondary nitrate (16% of PM2.5, 11% of PM10), construction activities (5% of PM2.5, 7% of PM10), sea salts and soils (4% of PM2.5, 5% of PM10), and biomass burning (8% of PM2.5, 8% of PM10). Conditional Probability Function was applied to help identify potential sources from local activities in HCMC.
Chapter 1 Introduction 1
1.1. Motivation 1
1.2. Goal 1
Chapter 2. Literature Review 3
2.1. Overview of atmospheric aerosol 3
2.1.1. Aerosol’s shape and size 3
2.1.2. Emission sources 4
2.1.3. Climate impact of atmospheric aerosol 7
2.1.4. The impact of atmospheric aerosol on human health 9
2.2. Chemical compositions of atmospheric aerosol 10
2.2.1. Water-soluble inorganic ions (WSIIs) 10
2.2.2. Carbonaceous matter (organic and black carbons) 11
2.3. Aerosol chemical characteristics in Asia 11
2.4. Aerosol chemical characteristics in Ho Chi Minh City, Vietnam 14
2.4.1. Concentration of PM 14
2.4.2. Factor analysis 17
Chapter 3 Methodology 19
3.1. Research Framework 19
3.2. Sampling site and sample collection 20
3.2.1. Short overview of Vietnam and Ho Chi Minh City. 20
3.2.2. Sampling site description 20
3.3. Sampling methods 21
3.4. Chemical analysis 23
3.4.1. PM mass determination 23
3.4.2. Water-soluble inorganic ions determination 24
3.4.3. Carbonaceous aerosol components 27
3.5. Air mass backward trajectory by HYSPLIT model 31
3.6. Source apportionment 31
3.6.1. Positive Matrix Factorization (PMF) model 32
Chapter 4 Results and Discussion 35
4.1. Time Series of PM2.5 and PM10 Chemical Components in Ho Chi Minh City 35
4.1.1 PM2.5 and its chemical components 35
4.1.2 PM10 and its chemical components 38
4.1.3 Partitions of components between fine and coarse particles 41
4.2 Water-soluble inorganic ions in urban aerosol 43
4.2.1 Charge balance 43
4.2.2 Characteristics and formation of nitrate 44
4.3 Carbonaceous contents in urban aerosol 45
4.3.1 OC/EC and char EC/soot EC ratios 45
4.3.2 Secondary Organic Carbon (SOC) 47
4.4 Source Apportionments of PM2.5 and PM10 50
4.4.1 Source apportionment of PM2.5 50
4.4.2 Source apportionment of PM10 57
Chapter 5 66
Conclusions 66
References 67
Supplementary data 73
Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J.M., 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research 102, 191-205.
Ali-Mohamed, A.Y., 1991. Estimation of inorganic particulate matter in the atmosphere of Isa Town, Bahrain, by dry deposition. Atmospheric Environment. Part B. Urban Atmosphere 25, 397-405.
Allen, J.O., Mayo, P.R., Hughes, L.S., Salmon, L.G., Cass, G.R., 2001. Emissions of Size-Segregated Aerosols from On-Road Vehicles in the Caldecott Tunnel. Environmental Science & Technology 35, 4189-4197.
Arfeuille, F., Luo, B., Heckendorn, P., Weisenstein, D., Sheng, J., Rozanov, E., Schraner, M., Brönnimann, S., Thomason, L., Peter, T., 2013. Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions. Atmos. Chem. Phys. 13, 11221-11234.
Arnold, F., Bührke, T., Qiu, S., 1990. Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichon. Nature 348, 49.
Ban-Weiss, G.A., Cao, L., Bala, G., Caldeira, K., 2012. Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dynamics 38, 897-911.
Cadle, S.H., Mulawa, P.A., Hunsanger, E.C., Nelson, K., Ragazzi, R.A., Barrett, R., Gallagher, G.L., Lawson, D.R., Knapp, K.T., Snow, R., 1999. Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area. Environ. Sci. Technol. 33, 2328-2339.
Cancer, I.A.f.R.o., 2014. IARC (2012). Agents Classified by the IARC Monographs 1, 103.
Cao, J.J., Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K.K., Watson, J.G., Zhu, C.S., Liu, S.X., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China. Atmos. Chem. Phys. 5, 3127-3137.
Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T., 1999. Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmospheric Environment 33, 2771-2781.
Cesari, D., Donateo, A., Conte, M., Merico, E., Giangreco, A., Giangreco, F., Contini, D., 2016. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment. Atmospheric Research 174-175, 106-119.
Chang, S.-C., Chou, C.C.-K., Chan, C.-C., Lee, C.-T., 2010. Temporal characteristics from continuous measurements of PM2. 5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008. Atmospheric Environment 44, 1088-1096.
Chen, S.J., Liao, S.H., Jian, W.J., Lin, C.C., 1997. Particle size distribution of aerosol carbons in ambient air. Environment International 23, 475-488.
Chow, J.C., 1995. Measurement methods to determine compliance with ambient air quality standards for suspended particles. Journal of the Air & Waste Management Association 45, 320-382.
Chow, J.C., Watson, J.G., Fujita, E.M., Lu, Z.Q., Lawson, D.R., Ashbaugh, L.L., 1994. Temporal and spatial variations of PM2.5 and PM10 aerosol in the southern California air-quality study. Atmospheric Environment 28, 2061-2080.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Chuang, M.-T., Chou, C.C.K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., Lee, C.-T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment 78, 72-81.
Crilley, L.R., Lucarelli, F., Bloss, W.J., Harrison, R.M., Beddows, D.C., Calzolai, G., Nava, S., Valli, G., Bernardoni, V., Vecchi, R., 2017. Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ Pollut 220, 766-778.
Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J., Crutzen, P.J., 1996. Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res.-Atmos. 101, 22869-22889.
Derkacs, D., Lim, S., Matheu, P., Mar, W., Yu, E., 2006. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters 89, 093103.
Fiocco, G., Fu'a, D., Visconti, G., 2013. The Mount Pinatubo eruption: Effects on the atmosphere and climate. Springer Science & Business Media.
Gehrig, R., Buchmann, B., 2003. Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmospheric Environment 37, 2571-2580.
Giang, N.T.H., Oanh, N.T.K., 2014. Roadside levels and traffic emission rates of PM2. 5 and BTEX in Ho Chi Minh City, Vietnam. Atmospheric environment 94, 806-816.
Grobéty, B., Gieré, R., Dietze, V., Stille, P., 2010. Airborne particles in the urban environment. Elements 6, 229-234.
Han, Y.M., Cao, J.J., Lee, S.C., Ho, K.F., An, Z.S., 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China. Atmos. Chem. Phys. 10, 595-607.
Harrison, T.M., Watson, E.B., 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contributions to Mineralogy and Petrology 84, 66-72.
Hien, P.D., Binh, N., Truong, Y., Ngo, N., 1999. Temporal variations of source impacts at the receptor, as derived from air particulate monitoring data in Ho Chi Minh City, Vietnam. Atmospheric Environment 33, 3133-3142.
Hien, P.D., Binh, N., Truong, Y., Ngo, N., Sieu, L., 2001. Comparative receptor modelling study of TSP, PM2 and PM2−10 in Ho Chi Minh City. Atmospheric Environment 35, 2669-2678.
Hildemann, L.M., Klinedinst, D.B., Klouda, G.A., Currie, L.A., Cass, G.R., 1994. SOURCES OF URBAN CONTEMPORARY CARBON AEROSOL. Environ. Sci. Technol. 28, 1565-1576.
Hossain, M.A., Hossain, M.Z., Fujita, M., 2009. Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Australian Journal of Crop Science 3, 53.
Huang, X., Liu, Z., Zhang, J., Wen, T., Ji, D., Wang, Y., 2016. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. Atmospheric Research 168, 70-79.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., Vonmont, H., 2005. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmospheric Environment 39, 637-651.
Hwang, I., Hopke, P.K., 2007. Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site. Atmospheric Environment 41, 506-518.
Jaiprakash, Singhai, A., Habib, G., Raman, R.S., Gupta, T., 2017. Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization. Environ Sci Pollut Res Int 24, 445-462.
Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568.
Kim, E., Hopke, P.K., 2004. Source Apportionment of Fine Particles in Washington, DC, Utilizing Temperature-Resolved Carbon Fractions. Journal of the Air & Waste Management Association 54, 773-785.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003. Source Identification of Atlanta Aerosol by Positive Matrix Factorization. Journal of the Air & Waste Management Association 53, 731-739.
Kim, E., Hopke, P.K., Edgerton, E.S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38, 3349-3362.
Kim, R.J., Wu, E., Rafael, A., Chen, E.-L., Parker, M.A., Simonetti, O., Klocke, F.J., Bonow, R.O., Judd, R.M., 2000. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. New England Journal of Medicine 343, 1445-1453.
Kravitz, B., Robock, A., 2011. Climate effects of high‐latitude volcanic eruptions: Role of the time of year. Journal of Geophysical Research: Atmospheres 116.
Kudo, S., Sekiguchi, K., Kim, K.H., Kinoshita, M., Möller, D., Wang, Q., Yoshikado, H., Sakamoto, K., 2012. Differences of chemical species and their ratios between fine and ultrafine particles in the roadside environment. Atmospheric environment 62, 172-179.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., Hsu, S.-P., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lenschow, P., Abraham, H.-J., Kutzner, K., Lutz, M., Preuß, J.-D., Reichenbächer, W., 2001. Some ideas about the sources of PM10. Atmospheric Environment 35, S23-S33.
Li, J., Pósfai, M., Hobbs, P.V., Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research: Atmospheres 108, n/a-n/a.
Ma, J., Li, X., Gu, P., Dallmann, T.R., Presto, A.A., Donahue, N.M., 2016. Estimating ambient particulate organic carbon concentrations and partitioning using thermal optical measurements and the volatility basis set. Aerosol Science and Technology 50, 638-651.
Mahowald, N., Albani, S., Kok, J.F., Engelstaeder, S., Scanza, R., Ward, D.S., Flanner, M.G., 2014. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research 15, 53-71.
Mahowald, N.M., Kloster, S., Engelstaedter, S., Moore, J.K., Mukhopadhyay, S., McConnell, J.R., Albani, S., Doney, S.C., Bhattacharya, A., Curran, M., 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos. Chem. Phys. 10, 10875-10893.
Maykut, N.N., Lewtas, J., Kim, E., Larson, T.V., 2003a. Source Apportionment of PM2.5 at an Urban IMPROVE Site in Seattle, Washington. Environ. Sci. Technol. 37, 5135-5142.
Maykut, N.N., Lewtas, J., Kim, E., Larson, T.V., 2003b. Source apportionment of PM2. 5 at an urban IMPROVE site in Seattle, Washington. Environmental science & technology 37, 5135-5142.
Mehta, S., Ngo, L.H., Cohen, A., Thach, T., Dan, V.X., Tuan, N.D., 2013. Air pollution and admissions for acute lower respiratory infections in young children of Ho Chi Minh City. Air Quality, Atmosphere & Health 6, 167-179.
Mehta, S., Sbihi, H., Dinh, T.N., Xuan, D.V., Thanh, L.L.T., Thanh, C.T., Le Truong, G., Cohen, A., Brauer, M., 2014. Effect of poverty on the relationship between personal exposures and ambient concentrations of air pollutants in Ho Chi Minh City. Atmospheric environment 95, 571-580.
Menon, S., Hansen, J., Nazarenko, L., Luo, Y., 2002. Climate effects of black carbon aerosols in China and India. Science 297, 2250-2253.
Mooibroek, D., Schaap, M., Weijers, E.P., Hoogerbrugge, R., 2011. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmospheric Environment 45, 4180-4191.
Moore, J., Kekonen, T., Grinsted, A., Isaksson, E., 2006. Sulfate source inventories from a Svalbard ice core record spanning the Industrial Revolution. Journal of Geophysical Research: Atmospheres 111.
Myhre, G., Myhre, C., Samset, B., Storelvmo, T., 2013. Aerosols and their relation to global climate and climate sensitivity. Nature Education Knowledge 4.
Norris, G., Duvall, R., S. Brown, S.B., 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. U.S. Environmental Protection Agency, Washington, DC.
Nunes, T.V., Pio, C.A., 1993. Carbonaceous aerosols in industrial and coastal atmospheres. Atmospheric Environment Part a-General Topics 27, 1339-1346.
Offenberg, J.H., Baker, J.E., 2000. Aerosol size distributions of elemental and organic carbon in urban and over-water atmospheres. Atmospheric Environment 34, 1509-1517.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pathak, R.K., Yao, X., Chan, C.K., 2004. Sampling artifacts of acidity and ionic species in PM2. 5. Environmental science & technology 38, 254-259.
Pathak, R.K., Yao, X., Lau, A.K., Chan, C.K., 2003. Acidity and concentrations of ionic species of PM2. 5 in Hong Kong. Atmospheric Environment 37, 1113-1124.
Pierce, J.R., Adams, P.J., 2006. Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. Journal of Geophysical Research: Atmospheres 111.
Pope, F., Braesicke, P., Grainger, R., Kalberer, M., Watson, I., Davidson, P., Cox, R., 2012. Stratospheric aerosol particles and solar-radiation management. Nature Climate Change 2, 713.
Qin, Y., Oduyemi, K., 2003. Atmospheric aerosol source identification and estimates of source contributions to air pollution in Dundee, UK. Atmospheric Environment 37, 1799-1809.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G., Puig, O., 2001a. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment 35, 6407-6419.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G., Puig, O., 2001b. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment 35, 6407-6419.
Ramadan, Z., Song, X.-H., Hopke, P.K., 2011. Identification of Sources of Phoenix Aerosol by Positive Matrix Factorization. Journal of the Air & Waste Management Association 50, 1308-1320.
Rodriguez, S., Querol, X., Alastuey, A., Viana, M., Alarcon, M., Mantilla, E., Ruiz, C., 2004. Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Science of The Total Environment 328, 95-113.
Sahu, R., Kaushik, S., Clement, C.C., Cannizzo, E.S., Scharf, B., Follenzi, A., Potolicchio, I., Nieves, E., Cuervo, A.M., Santambrogio, L., 2011. Microautophagy of cytosolic proteins by late endosomes. Developmental cell 20, 131-139.
Salma, I., Chi, X., Maenhaut, W., 2004. Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmospheric Environment 38, 27-36.
Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Song, X.H., Polissar, A.V., Hopke, P.K., 2001. Sources of fine particle composition in the northeastern US. Atmospheric Environment 35, 5277-5286.
Sun, Y.L., Zhuang, G.S., Tang, A.H., Wang, Y., An, Z.S., 2006. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 40, 3148-3155.
Tsai, Y.-M., Chien, C.-F., Lin, L.-C., Tsai, T.-H., 2011. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. International journal of pharmaceutics 416, 331-338.
Turpin, B.J., Huntzicker, J.J., 1991. Secondary formation of organic aerosol in the Los_angeles analysis of organic and elemental carbon concentrations. Atmospheric Environment Part a-General Topics 25, 207-215.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Valenzuela, A., Olmo, F., Lyamani, H., Antón, M., Quirantes, A., Alados-Arboledas, L., 2012. Aerosol radiative forcing during African desert dust events (2005–2010) over Southeastern Spain. Atmos. Chem. Phys. 12, 10331-10351.
Verma, A., Stellacci, F., 2010. Effect of surface properties on nanoparticle–cell interactions. Small 6, 12-21.
Voutsa, D., Samara, C., Manoli, E., Lazarou, D., Tzoumaka, P., 2014. Ionic composition of PM2.5 at urban sites of northern Greece: secondary inorganic aerosol formation. Environ Sci Pollut Res Int 21, 4995-5006.
Wahid, N.B.A., Latif, M.T., Suratman, S., 2013. Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere 91, 1508-1516.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R., Ashbaugh, L.L., 1994. Chemical mass balance source apportionment of PM10 during the Southern California Air Quality Study. Aerosol Science and Technology 21, 1-36.
WHO, 2006. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide.
Zhao, W., Hopke, P.K., 2004. Source apportionment for ambient particles in the San Gorgonio wilderness. Atmospheric Environment 38, 5901-5910.
Zhao, W., Hopke, P.K., 2006. Source identification for fine aerosols in Mammoth Cave National Park. Atmospheric Research 80, 309-322.
許家綺, 2015. 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化,污染來源推估及對能見度影響. 碩士論文.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔