(18.210.12.229) 您好!臺灣時間:2021/03/01 06:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝裕華
研究生(外文):Yu-Hua Hsieh
論文名稱:以動態模型分析PQ-DMNA/PMMA製作體積布拉格光柵之光化學反應與開發同調雷射光束合併元件之研究
論文名稱(外文):Using detailed rate equations analysis photochemical reaction of PQ-DMNA/PMMA based volume Bragg grating and manufacturing an optical element of the coherence laser beam combining
指導教授:鍾德元
指導教授(外文):Te-Yuan Chung
學位類別:博士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:161
中文關鍵詞:體積布拉格全像光柵同調雷射光束合併高分子光敏材料
外文關鍵詞:Volume Bragg gratingCoherence laser beam combiningPQ-DMNA/PMMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究計畫使用新穎高分子感光材料PQ-DMNA/PMMA製作反射式體積布拉格光柵並利用動態模型模擬PQ與DMNA分子受到雙光束干涉曝光時濃度分布情形。接著使用耦合波方程式計算光柵之繞射效率。藉由改變入射光強度、曝光時間、初始PQ濃度與初始DMNA濃度獲取動態模型中之未知參數且實驗與模擬結果相當吻合。接著使用自製的反射式體積布拉格光柵回饋半導體雷射使得雷射縱向模態達到單縱模輸出且高功率輸出。最後利用全像紀錄方式設計與製作雙顆半導體雷射同調光束合併之元件。使用同調光束合併之元件回饋,不論單顆或雙顆雷射縱向模態輸出皆已達到單縱模輸出且雷射橫向模態也可經由光柵得已修正。但是雙顆雷射耦合輸出只有0.02之效率,推測原因為紀錄與讀取時波前不一致造成。但對於使用全像方式製作雙顆半導體雷射同調光束合併之元件之概念以驗證其可行性。
In this research, N, N-dimethyl-4-nitroniline (DMNA) doped into a familiar hologram material, PQ/PMMA, to form a novel photopolymer, PQ-DMNA/PMMA was used to record reflective-type volume Bragg grating (VBG). Based on several assumes, a detail rate equation was written down and used to analysis the concentration distribution of all molecules in PQ-DMNA/PMMA under exposed two counter-propagating beams. The concentration distributions of PQ and product can used to predict and calculate the diffraction efficiency of PQ-DMNA/PMMA VBG through L-L relation, Fourier series analysis and coupled-mode equation. By changing incident intensity, exposure time, initial concentration of PQ and DMAN, the unknown coefficient of rate equation can be abstained. The results of simulation and experiment are agreed well under continuous exposure. Under interrupt exposure, the empirical function of collision coefficient and lifetime of 3DMNA* were found and proposed a preliminary guessing for whose physical behavior. Then, using a homemade reflective-type VBG feedback a laser diode which is operated on single longitudinal mode and the output power can achieve 150 mW. Finally, an optical element of laser coherence beam combining was used to feedback two laser diodes simultaneously. Two laser diodes both achieved single longitudinal mode operation and the transverse mode were improved down. However, the efficiency of combining output is only 0.01 due to the bad transverse mode of the laser diode.
中文摘要 I
Abstract V
致謝 VI
目錄 VIII
圖目錄 XI
表目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 6
第二章 理論背景 9
2-1雷射光束合併 (Laser beam combining) 9
2-2 體積布拉格光柵 (Volume Bragg grating) 18
2-2-1體積布拉格光柵原理與構造 18
2-2-2以耦合波方程式模擬體積布拉格全像光柵之光學特性 20
2-3 全像理論(Holography) 28
2-4 感光高分子材料PQ-DMNA/PMMA 36
2-4-1 材料組成與化學反應 36
2-4-2 樣品製備與光學特性量測 43
2.5 PQ-DMNA/PMMA光化學反應速率方程式 48
第三章 數值模擬與分析方法 52
3-1 連續式曝光時濃度空間分佈隨時間變化之模擬分析 52
3-2 非連續曝光時濃度空間分佈隨時間變化之模擬分析 55
3-3 分子濃度與折射率之關係 57
3-4 傅立葉級數振幅分析 61
3-5樣品濃度與曝光參數對於折射率變化之影響 66
3-5-1 樣品初始濃度 66
3-5-2 改變不同入射光強度 69
第四章 實驗與模擬結果之分析與討論 71
4-1雙光束干涉實驗架構 71
4-2 實驗結果分析與討論 73
4-2-1 樣品基本參數 73
4-2-2 改變不同入射光強度實驗 76
4-2-3 改變不同DMNA與PQ濃度實驗 80
4-2-4 改變不同曝光時間實驗 82
4-3實驗結果與模擬參數分析 88
4-3-1不同照光強度下連續式曝光實驗結果分析與模擬比較 88
4-3-2 不同PQ與DMNA初始濃度模擬與實驗分析 94
4-3-3 非連續式曝光實驗結果分析與模擬比較 98
第五章 同調雷射光束合併元件設計與應用 109
5-1 線型外腔式共振腔 109
5-2 同調雷射光束元件製作與雷射特性量測 114
第六章 結論 130
第七章 參考文獻 132
第八章 附錄 137
附錄一 VBG繞射效率與折射變化之模擬程式碼 137
附錄二 化學反應方程式模擬程式碼 140
[1] T. Markvart, "The thermodynamics of optical étendue," Journal of Optics A: pure and applied optics, vol. 10, p. 015008, 2007.
[2] L. B. Glebov, "High brightness laser design based on volume Bragg gratings," in Defense and Security Symposium, 2006, p. 11.
[3] L. B. Glebov, "Volume Bragg Gratings in PTR Glass--New Optical Elements for Laser Design," in Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing, Rochester, New York, 2008, p. SThA4.
[4] T.-y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Optics Letters, vol. 31, pp. 229-231, 2006/01/15 2006.
[5] L. Glebova, K. Chamma, J. Lumeau, and L. Glebov, "Photo-Thermo-Refractive glass - Properties and Applications," in Advances in Optical Materials, Istanbul, 2011, p. AIThC2.
[6] L. Glebov, "High brightness diode lasers controlled by volume Bragg gratings," in SPIE OPTO, 2017, p. 8.
[7] G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, "Volume Holographic Grating Wavelength Stabilized Laser Diodes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 672-678, 2007.
[8] B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Optics Letters, vol. 29, pp. 1891-1893, 2004/08/13 2004.
[9] G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, "Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory," Optics Letters, vol. 23, pp. 1310-1312, 1998/08/15 1998.
[10] Y.-F. Chen, J.-H. Lin, S. H. Lin, K. Y. Hsu, and W.-T. Whang, "PQ:DMNA/PMMA photopolymer having amazing volume holographic recording at wavelength of insignificant absorption," Optics Letters, vol. 38, pp. 2056-2058, 2013/06/15 2013.
[11] W. B. Veldkamp, J. R. Leger, and G. J. Swanson, "Coherent summation of laser beams using binary phase gratings," Optics Letters, vol. 11, pp. 303-305, 1986/05/01 1986.
[12] J. R. Leger, M. L. Scott, and W. B. Veldkamp, "Coherent addition of AlGaAs lasers using microlenses and diffractive coupling," Applied Physics Letters, vol. 52, pp. 1771-1773, 1988.
[13] G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "Stable coherent coupling of laser diodes by a volume Bragg grating in photothermorefractive glass," Optics Letters, vol. 31, pp. 1453-1455, 2006/05/15 2006.
[14] 詹偉平 and C. Wei-ping, "以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究; Study of external cavity VBG-feedback laser using semiconductor tapered amplifier as the gain medium," 國立中央大學.
[15] 杜隆琦 and D. Long-Chi, "以PQ:PMMA製作體積布拉格光柵回饋半導體雷射以達成波長可調之窄波長雷射輸出;Narrow Linewidth and Tunable Wavelength Tapered Amplifier Laser Using PQ:PMMA Bragg Grating as Cavity Mirror," 國立中央大學.
[16] 陳傳文 and C.-W. Chen, "以PQ:PMMA製作反射式體積布拉格光柵回饋錐形半導體放大器之窄波長雷射輸出研究;Study on achieving narrowing linewidth laser output from tapered amplifier feedback with PQ:PMMA reflective volume Bragg grating," 國立中央大學.
[17] 施堡仁 and B.-J. Shih, "以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究;Analysis on diffraction efficiency of PQ:PMMA-based volume Bragg grating using detailed rate equations," 國立中央大學.
[18] T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 567-577, 2005.
[19] V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, "Spectral beam combining of a broad-stripe diode laser array in an external cavity," Optics Letters, vol. 25, pp. 405-407, 2000/03/15 2000.
[20] E. J. Bochove, "Theory of spectral beam combining of fiber lasers," IEEE Journal of Quantum Electronics, vol. 38, pp. 432-445, 2002.
[21] G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," in Lasers and Applications in Science and Engineering, 2005, p. 11.
[22] A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, "Efficient power scaling of laser radiation by spectral beam combining," Optics Letters, vol. 33, pp. 384-386, 2008/02/15 2008.
[23] S. Ménard, M. Vampouille, B. Colombeau, and C. Froehly, "Highly efficient phase locking and extracavity coherent combination of two diode-pumped Nd:YAG laser beams," Optics Letters, vol. 21, pp. 1996-1998, 1996/12/15 1996.
[24] D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, "Modal analysis of linear Talbot-cavity semiconductor lasers," Optics Letters, vol. 16, pp. 823-825, 1991/06/01 1991.
[25] C. C. Cook, T. Y. E. D. F. M. I. H. Fan, and U. Keller, "Spectral Beam Combining of Yb-doped Fiber Lasers in an External Cavity," in Advanced Solid State Lasers, Boston, Massachusetts, 1999, p. PD5.
[26] Z. Yujin, K. Toshiyuki, S. Nakahiro, S. Takashi, and K. Hirofumi, "Narrow-bandwidth and stable-wavelength operation of spatial beam-combining high-power laser-diode stack configuration using a single volume Bragg grating," Applied Physics Express, vol. 8, p. 052701, 2015.
[27] W. Koechner, Solid-State Laser Engineering: Springer, 2006.
[28] A. Mooradian, A. V. Shchegrov, and J. P. Watson, "Projection display apparatus, system, and method," ed: Google Patents, 2007.
[29] J. M. Tam, I. Biran, and D. R. Walt, "An imaging fiber-based optical tweezer array for microparticle array assembly," Applied Physics Letters, vol. 84, pp. 4289-4291, 2004.
[30] L. Gao, L. Shao, B.-C. Chen, and E. Betzig, "3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy," Nature Protocols, vol. 9, p. 1083, 04/10/online 2014.
[31] J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, "Self-healing properties of optical Airy beams," Optics Express, vol. 16, pp. 12880-12891, 2008/08/18 2008.
[32] A. Yariv and P. Yeh, Optical waves in crystals: propagation and control of laser radiation: Wiley, 1984.
[33] J. W. Goodman, Introduction to Fourier Optics: W. H. Freeman, 2005.
[34] D. Gabor, "Microscopy by Reconstructed Wave Fronts: II," Proceedings of the Physical Society. Section B, vol. 64, p. 449, 1951.
[35] E. N. Leith and J. Upatnieks, "Reconstructed Wavefronts and Communication Theory*," Journal of the Optical Society of America, vol. 52, pp. 1123-1130, 1962/10/01 1962.
[36] T. Nishi and T. Wang, "Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)-poly (methyl methacrylate) mixtures," Macromolecules, vol. 8, pp. 909-915, 1975.
[37] Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, et al., "Study on poly (methyl methacrylate)/carbon nanotube composites," Materials Science and Engineering: A, vol. 271, pp. 395-400, 1999.
[38] O. Y. Borbulevych, R. D. Clark, A. Romero, L. Tan, M. Y. Antipin, V. N. Nesterov, et al., "Experimental and theoretical study of the structure of N, N-dimethyl-4-nitroaniline derivatives as model compounds for non-linear optical organic materials," Journal of molecular structure, vol. 604, pp. 73-86, 2002.
[39] J. O. Morley, V. J. Docherty, and D. Pugh, "Non-linear optical properties of organic molecules. Part 2. Effect of conjugation length and molecular volume on the calculated hyperpolarisabilities of polyphenyls and polyenes," Journal of the Chemical Society, Perkin Transactions 2, pp. 1351-1355, 1987.
[40] C.-Z. Zhang, H. Cao, and Z.-B. Guo, "Theoretical Study of Effect of the Number of N, N-dimethyl-4-nitroaniline Units in Novel “Parallel Connection” Chromophores on Its Nonlinear Optical Properties," ISRN Physical Chemistry, vol. 2012, 2011.
[41] M. Tsuda, "Some experiments on the triplet state mechanism of the spectral sensitization of poly (vinyl cinnamate) and its application for searching new sensitizers," Bulletin of the Chemical Society of Japan, vol. 42, pp. 905-908, 1969.
[42] "Study on the vibrational energy relaxation of p-nitroaniline, N,N-dimethyl-p-nitroaniline, and azulene by the transient grating method," The Journal of Chemical Physics, vol. 125, p. 194516, 2006.
[43] Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, et al., "Study of PQ/PMMA photopolymer. Part 2: experimental results," JOSA B, vol. 30, pp. 3308-3315, 2013.
[44] L. Shiuan-Huei, L. June-Hua, and Y. H. Ken, "Research on fabrication of PQ:PMMA photopolymer," in CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671), 2003, p. 377 Vol.1.
[45] Y. N. Hsiao, W. T. Whang, and S. H. Lin, "Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials," 2004, p. 10.
[46] Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, et al., "Study of PQ/PMMA photopolymer. Part 1: theoretical modeling," Journal of the Optical Society of America B, vol. 30, pp. 3298-3307, 2013/12/01 2013.
[47] M. Born and E. Wolf, "Principles of Optics (; Oxford," ed: Pergamon, 1980.
[48] V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, "Quantitative model of volume hologram formation in photopolymers," Journal of Applied Physics, vol. 81, pp. 5913-5923, 1997.
[49] 李正中, 薄膜光學與鍍膜技術: 藝軒, 2006.
[50] J. A. Dobrowolski and D. Lowe, "Optical thin film synthesis program based on the use of Fourier transforms," Applied Optics, vol. 17, pp. 3039-3050, 1978/10/01 1978.
[51] B. G. Bovard, "Fourier transform technique applied to quarterwave optical coatings," Applied Optics, vol. 27, pp. 3062-3063, 1988/08/01 1988.
[52] W. H. Southwell, "Spectral response calculations of rugate filters using coupled-wave theory," Journal of the Optical Society of America A, vol. 5, pp. 1558-1564, 1988/09/01 1988.
[53] T.-Y. Chung, Y.-H. Hsieh, C.-C. Liao, and C.-H. A. Cheng, "Transverse modes of a laser using volume Bragg grating as the cavity mirror," Optics Letters, vol. 38, pp. 5346-5348, 2013/12/15 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔