|
1. Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 2001, 31 (2), 145-157. 2. He, Z.; Sun, C.; Yang, S.; Ding, Y.; He, H.; Wang, Z., Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. Journal of Hazardous Materials 2009, 162 (2), 1477-1486. 3. Kumar, S. G.; Devi, L. G., Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of physical chemistry A 2011, 115 (46), 13211-13241. 4. Takahashi, T.; Iwahara, H., Oxide ion conductors based on bismuthsesquioxide. Materials Research Bulletin 1978, 13 (12), 1447-1453. 5. Kudo, A.; Omori, K.; Kato, H., A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. Journal of the American Chemical Society 1999, 121 (49), 11459-11467. 6. Zhang, X.; Ai, Z.; Jia, F.; Zhang, L., Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X= Cl, Br, I) nanoplate microspheres. The Journal of Physical Chemistry C 2008, 112 (3), 747-753. 7. Torimoto, T.; Ito, S.; Kuwabata, S.; Yoneyama, H., Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Environmental science & technology 1996, 30 (4), 1275-1281. 8. Zhao, J.; Wu, T.; Wu, K.; Oikawa, K.; Hidaka, H.; Serpone, N., Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles. Environmental science & technology 1998, 32 (16), 2394-2400. 9. Kuo, W. S.; Ho, P. H., Solar photocatalytic decolorization of dyes in solution with TiO2 film. Dyes and Pigments 2006, 71 (3), 212-217. 10. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565. 11. Cheng, H.; Huang, B.; Dai, Y., Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 2014, 6 (4), 2009-2026. 12. Jiang, Y.-R.; Lin, H.-P.; Chung, W.-H.; Dai, Y.-M.; Lin, W.-Y.; Chen, C.-C., Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet. Journal of Hazardous Materials 2015, 283, 787-805. 13. Ding, L.; Wei, R.; Chen, H.; Hu, J.; Li, J., Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Applied Catalysis B: Environmental 2015, 172-173, 91-99. 14. Li, G.; Qin, F.; Wang, R.; Xiao, S.; Sun, H.; Chen, R., BiOX (X= Cl, Br, I) nanostructures: mannitol-mediated microwave synthesis, visible light photocatalytic performance, and Cr (VI) removal capacity. Journal of colloid and interface science 2013, 409, 43-51. 15. Wu, S.; Wang, C.; Cui, Y.; Wang, T.; Huang, B.; Zhang, X.; Qin, X.; Brault, P., Synthesis and photocatalytic properties of BiOCl nanowire arrays. Materials Letters 2010, 64 (2), 115-118. 16. Wang, C.; Shao, C.; Liu, Y.; Zhang, L., Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Materialia 2008, 59 (3), 332-335.
17. Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L., Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. Journal of the American Chemical Society 2012, 134 (10), 4473-4476. 18. Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung, D.; Lee, W. I., Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. Journal of Catalysis 2009, 262 (1), 144-149. 19. Li, T. B.; Chen, G.; Zhou, C.; Shen, Z. Y.; Jin, R. C.; Sun, J. X., New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Transactions 2011, 40 (25), 6751-6758. 20. Xie, T.; Xu, L.; Liu, C.; Yang, J.; Wang, M., Magnetic composite BiOCl–SrFe12O 19: a novel p–n type heterojunction with enhanced photocatalytic activity. Dalton Transactions 2014, 43 (5), 2211-2220. 21. Gao, Y.; Wang, L.; Li, Z.; Li, C.; Cao, X.; Zhou, A.; Hu, Q., Microwave-assisted synthesis of flower-like Ag–BiOCl nanocomposite with enhanced visible-light photocatalytic activity. Materials Letters 2014, 136, 295-297. 22. Gao, F.; Zeng, D.; Huang, Q.; Tian, S.; Xie, C., Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Physical Chemistry Chemical Physics 2012, 14 (30), 10572-10578. 23. Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M., New insights into the structure and reduction of graphite oxide. Nature chemistry 2009, 1 (5), 403-408. 24. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. science 2004, 306 (5696), 666-669. 25. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8 (3), 902-907. 26. Bolotin, K. I.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H., Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008, 146 (9-10), 351-355. 27. Yi, M.; Shen, Z., A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 2015, 3 (22), 11700-11715. 28. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nature nanotechnology 2009, 4 (4), 217. 29. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N., Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312 (5777), 1191-1196. 30. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324 (5932), 1312-1314. 31. Li, Z.-F.; Zhang, H.; Liu, Q.; Liu, Y.; Stanciu, L.; Xie, J., Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon 2014, 71, 257-267. 32. Akhavan, O.; Ghaderi, E., Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS nano 2010, 4 (10), 5731-5736. 33. Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y., A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Advanced Materials 2009, 21 (12), 1275-1279. 34. Eda, G.; Fanchini, G.; Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature nanotechnology 2008, 3 (5), 270. 35. Kang, S.; Pawar, R. C.; Pyo, Y.; Khare, V.; Lee, C. S., Size-controlled BiOCl–RGO composites having enhanced photodegradative properties. Journal of Experimental Nanoscience 2016, 11 (4), 259-275. 36. Dong, S.; Pi, Y.; Li, Q.; Hu, L.; Li, Y.; Han, X.; Wang, J.; Sun, J., Solar photocatalytic degradation of sulfanilamide by BiOCl/reduced graphene oxide nanocomposites: Mechanism and degradation pathways. Journal of Alloys and Compounds 2016, 663, 1-9. 37. Su, X.; Yang, J.; Yu, X.; Zhu, Y.; Zhang, Y., In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B. Applied Surface Science 2018, 433, 502-512. 38. Wang, W.; He, M.; Zhang, H.; Dai, Y., Preparation of Reduced Graphene Oxide/Ultrathin BiOCl Nanosheet Composites with Enhanced Electrochemical Behavior and Photocatalytic Performance. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE 2016, 11 (3), 1831-1839. 39. Si, Y.; Samulski, E. T., Synthesis of water soluble graphene. Nano letters 2008, 8 (6), 1679-1682. 40. Fernández-Merino, M. J.; Guardia, L.; Paredes, J.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascon, J., Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. The Journal of Physical Chemistry C 2010, 114 (14), 6426-6432. 41. Zhang, W.; Huang, H.; Li, F.; Deng, K.; Wang, X., Palladium nanoparticles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation. Journal of Materials Chemistry A 2014, 2 (44), 19084-19094. 42. Ge, J.; Guo, X.; Xu, X.; Zhang, P.; Zhu, J.; Wang, J., A eutectic mixture of choline chloride and urea as an assisting solvent in the synthesis of flower-like hierarchical BiOCl structures with enhanced photocatalytic activity. RSC Advances 2015, 5 (61), 49598-49605. 43. Li, B.; Huang, H.; Guo, Y.; Zhang, Y., Diatomite-immobilized BiOI hybrid photocatalyst: facile deposition synthesis and enhanced photocatalytic activity. Applied Surface Science 2015, 353, 1179-1185. 44. Gao, W., The chemistry of graphene oxide. In Graphene oxide, Springer: 2015; pp 61-95. 45. Serpone, N.; Lawless, D.; Khairutdinov, R., Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? The journal of Physical Chemistry 1995, 99 (45), 16646-16654. 46. Wang, C.-Y.; Zhang, Y.-J.; Wang, W.-K.; Pei, D.-N.; Huang, G.-X.; Chen, J.-J.; Zhang, X.; Yu, H.-Q., Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Applied Catalysis B: Environmental 2018, 221, 320-328. 47. Yu, Y.; Cao, C.; Liu, H.; Li, P.; Wei, F.; Jiang, Y.; Song, W., A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. Journal of Materials Chemistry A 2014, 2 (6), 1677-1681. 48. Fujishima, Y.; Okamoto, S.; Yoshiba, M.; Itoi, T.; Kawamura, S.; Yoshida, Y.; Ogura, Y.; Izumi, Y., Photofuel cell comprising titanium oxide and bismuth oxychloride (BiO 1− x Cl 1− y) photocatalysts that uses acidic water as a fuel. Journal of Materials Chemistry A 2015, 3 (16), 8389-8404. 49. Li, Y.; Zhao, Y.; Wu, G.; Ma, H.; Zhao, J., Bi superlattice nanopolygons at BiOCl (001) nanosheet assembled architectures for visible-light photocatalysis. Materials Research Bulletin 2018, 101, 39-47.
|