跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 01:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王筑瑩
研究生(外文):Wang ,Chu-Ying
論文名稱:BiOCl/rGO微米顆粒之合成、鑑定和光催化降解羅丹明B
論文名稱(外文):BiOCl/rGO photocatalysts:synthesis , characterization and photocatalytic activity
指導教授:林泱蔚
口試委員:林泱蔚吳仁彰張柏齡
口試日期:2018-07-17
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:67
中文關鍵詞:還原氧化石墨烯氯氧化鉍溶劑熱法光觸媒半導體
外文關鍵詞:bismuth oxychloridereduced graphene oxidephotocatalysissemiconductorhydrothermal method
相關次數:
  • 被引用被引用:2
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討不同方式製備還原態氧化石墨烯(Reduced Graphene Oxide , rGO),並使用溶劑熱法簡單製備BiOCl/rGO異質結構。利用穿透式電子顯微鏡(Transmission electron microscopy , TEM),掃描式電子顯微鏡(Scanning Electron Microscopy , SEM)以及X射線繞射儀(X-Ray power Diffraction , XRD)對加入GO 與rGO之光觸媒異質材料進行表面特徵探討。藉由紫外光-可見光漫反射光譜儀(UV-Vis Diffuse Reflectance Spectroscopy , UV-vis DRS)得到材料能隙為3.12 eV。所製備BiOCl/rGO 異質材料可以在可見光下對羅丹明B(Rhodamine B , RhB)有不同的光催化效果,其中以BiOCl/1.2 rGO有最好的效果。在可見光照射下(88000 lm),20分鐘可降解羅丹明B染料(20 ppm)達93.3%,相較於其他光觸媒(TiO2 , P25)有更好的降解效果。本研究所所合成之BiOCl/rGO異質材料簡易合成且可利用可見光作為降解光源並可以快速光降解有機染料,並且可以應用於真實樣品光降解有機汙染物及細菌具有良好的效果。
In this study, different ways to prepare reduced graphene oxide (rGO) doped with solvothermal synthesized BiOCl for the formation of BiOCl/rGO heterostructures were proposed. The heterostructures with different compose of graphene oxide (GO) and reduced graphene oxide (rGO) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The prepared heterostructures provided a band gap of 3.12 eV through UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS). Comparing to pure BiOCl, the prepared BiOCl/rGO exhibited higher photocatalytic activity toward Rhodamine B (93.3% degradation efficiency within 20 min-visible light irradiation). The prepared BiOCl/rGO heterostructures possessed advanced properties including easy preparation, and higher photocatalytic activity under visible light irradiation. It possesses a good performance for the photocatalytic degradation of organic pollutants and bacteria in environmental water samples in the future.
中文摘要……………………………………………………………………………Ⅰ
英文摘要……………………………………………………………………………Ⅱ
目錄……………………………………………………………………………………Ⅲ
圖目錄…………………………………………………………………………………Ⅴ
表目錄…………………………………………………………………………………Ⅶ
一、緒論
  1-1 光觸媒……………………………………………………………1
  1-2 羅丹明B與其他染料特性………………………3
  1-3 光觸媒半導體改質……………………………………5
  1-4 還原氧化石墨烯之性質………………………….9
  1-5 研究動機與目的…………………………………………11

二、實驗藥品與儀器
  2-1 實驗藥品…………………………………………………………13
  2-2 實驗儀器…………………………………………………………14

三、實驗方法
  3-1 光觸媒材料與還原氧化石墨烯製備……………………………………16
  3-2 光降解活性實驗……………………………………………………………………………17
  3-3 光催化不同染料及真實樣品……………………………………………………17
  3-4 光催化滅菌活性……………………………………………………………………………18
  3-5 光電流電極製備……………………………………………………………………………18


四、結果與討論
  4-1 合成還原氧化石墨烯之鑑定………………………………………19
  4-2 光觸媒之XRD………………………………………………………………………22
  4-3 光觸媒表面特徵及結構…………………………………………………23
  4-4 光觸媒之拉曼光譜……………………………………………………………27
  4-5 光觸媒與還原氧化石墨烯之XPS…………………………………29
  4-6 光觸媒之UV-DRS…………………………………………………………………33
  4-7 光降解羅丹明B……………………………………………………………………35
  4-8 合成BiOCl/rGO之硝酸鉍合成量探討………………………38
  4-9 還原氧化石墨烯的添加量對降解之影響…………………41
  4-10 觸媒與染料最佳化探討…………………………………………………43
  4-11 光觸媒電子電洞再結合之探討……………………………………45
  4-12 光催化機制……………………………………………………………………………49
  4-13光觸媒之礦化效率………………………………………………………………51
  4-14 光觸媒回收率………………………………………………………………………52

五、真實應用與未來展望
  5-1 光觸媒降解不同有機染料…………………………………………………54
  5-2 光觸媒在真實水樣中降解RhB…………………………………………56
  5-3 染料敏化之應用……………………………………………………………………57
  5-4 未來展望…………………………………………………………………………………59

六、結論………………………………………………………………………………………………………61

七、參考文獻……………………………………………………………………………………………62
1. Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 2001, 31 (2), 145-157.
2. He, Z.; Sun, C.; Yang, S.; Ding, Y.; He, H.; Wang, Z., Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. Journal of Hazardous Materials 2009, 162 (2), 1477-1486.
3. Kumar, S. G.; Devi, L. G., Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of physical chemistry A 2011, 115 (46), 13211-13241.
4. Takahashi, T.; Iwahara, H., Oxide ion conductors based on bismuthsesquioxide. Materials Research Bulletin 1978, 13 (12), 1447-1453.
5. Kudo, A.; Omori, K.; Kato, H., A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. Journal of the American Chemical Society 1999, 121 (49), 11459-11467.
6. Zhang, X.; Ai, Z.; Jia, F.; Zhang, L., Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X= Cl, Br, I) nanoplate microspheres. The Journal of Physical Chemistry C 2008, 112 (3), 747-753.
7. Torimoto, T.; Ito, S.; Kuwabata, S.; Yoneyama, H., Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Environmental science & technology 1996, 30 (4), 1275-1281.
8. Zhao, J.; Wu, T.; Wu, K.; Oikawa, K.; Hidaka, H.; Serpone, N., Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles. Environmental science & technology 1998, 32 (16), 2394-2400.
9. Kuo, W. S.; Ho, P. H., Solar photocatalytic decolorization of dyes in solution with TiO2 film. Dyes and Pigments 2006, 71 (3), 212-217.
10. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565.
11. Cheng, H.; Huang, B.; Dai, Y., Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 2014, 6 (4), 2009-2026.
12. Jiang, Y.-R.; Lin, H.-P.; Chung, W.-H.; Dai, Y.-M.; Lin, W.-Y.; Chen, C.-C., Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet. Journal of Hazardous Materials 2015, 283, 787-805.
13. Ding, L.; Wei, R.; Chen, H.; Hu, J.; Li, J., Controllable synthesis of highly active BiOCl hierarchical microsphere self-assembled by nanosheets with tunable thickness. Applied Catalysis B: Environmental 2015, 172-173, 91-99.
14. Li, G.; Qin, F.; Wang, R.; Xiao, S.; Sun, H.; Chen, R., BiOX (X= Cl, Br, I) nanostructures: mannitol-mediated microwave synthesis, visible light photocatalytic performance, and Cr (VI) removal capacity. Journal of colloid and interface science 2013, 409, 43-51.
15. Wu, S.; Wang, C.; Cui, Y.; Wang, T.; Huang, B.; Zhang, X.; Qin, X.; Brault, P., Synthesis and photocatalytic properties of BiOCl nanowire arrays. Materials Letters 2010, 64 (2), 115-118.
16. Wang, C.; Shao, C.; Liu, Y.; Zhang, L., Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Materialia 2008, 59 (3), 332-335.

17. Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L., Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. Journal of the American Chemical Society 2012, 134 (10), 4473-4476.
18. Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung, D.; Lee, W. I., Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. Journal of Catalysis 2009, 262 (1), 144-149.
19. Li, T. B.; Chen, G.; Zhou, C.; Shen, Z. Y.; Jin, R. C.; Sun, J. X., New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances. Dalton Transactions 2011, 40 (25), 6751-6758.
20. Xie, T.; Xu, L.; Liu, C.; Yang, J.; Wang, M., Magnetic composite BiOCl–SrFe12O 19: a novel p–n type heterojunction with enhanced photocatalytic activity. Dalton Transactions 2014, 43 (5), 2211-2220.
21. Gao, Y.; Wang, L.; Li, Z.; Li, C.; Cao, X.; Zhou, A.; Hu, Q., Microwave-assisted synthesis of flower-like Ag–BiOCl nanocomposite with enhanced visible-light photocatalytic activity. Materials Letters 2014, 136, 295-297.
22. Gao, F.; Zeng, D.; Huang, Q.; Tian, S.; Xie, C., Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Physical Chemistry Chemical Physics 2012, 14 (30), 10572-10578.
23. Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M., New insights into the structure and reduction of graphite oxide. Nature chemistry 2009, 1 (5), 403-408.
24. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. science 2004, 306 (5696), 666-669.
25. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8 (3), 902-907.
26. Bolotin, K. I.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H., Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008, 146 (9-10), 351-355.
27. Yi, M.; Shen, Z., A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 2015, 3 (22), 11700-11715.
28. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nature nanotechnology 2009, 4 (4), 217.
29. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N., Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312 (5777), 1191-1196.
30. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324 (5932), 1312-1314.
31. Li, Z.-F.; Zhang, H.; Liu, Q.; Liu, Y.; Stanciu, L.; Xie, J., Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon 2014, 71, 257-267.
32. Akhavan, O.; Ghaderi, E., Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS nano 2010, 4 (10), 5731-5736.
33. Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y., A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Advanced Materials 2009, 21 (12), 1275-1279.
34. Eda, G.; Fanchini, G.; Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature nanotechnology 2008, 3 (5), 270.
35. Kang, S.; Pawar, R. C.; Pyo, Y.; Khare, V.; Lee, C. S., Size-controlled BiOCl–RGO composites having enhanced photodegradative properties. Journal of Experimental Nanoscience 2016, 11 (4), 259-275.
36. Dong, S.; Pi, Y.; Li, Q.; Hu, L.; Li, Y.; Han, X.; Wang, J.; Sun, J., Solar photocatalytic degradation of sulfanilamide by BiOCl/reduced graphene oxide nanocomposites: Mechanism and degradation pathways. Journal of Alloys and Compounds 2016, 663, 1-9.
37. Su, X.; Yang, J.; Yu, X.; Zhu, Y.; Zhang, Y., In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B. Applied Surface Science 2018, 433, 502-512.
38. Wang, W.; He, M.; Zhang, H.; Dai, Y., Preparation of Reduced Graphene Oxide/Ultrathin BiOCl Nanosheet Composites with Enhanced Electrochemical Behavior and Photocatalytic Performance. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE 2016, 11 (3), 1831-1839.
39. Si, Y.; Samulski, E. T., Synthesis of water soluble graphene. Nano letters 2008, 8 (6), 1679-1682.
40. Fernández-Merino, M. J.; Guardia, L.; Paredes, J.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascon, J., Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. The Journal of Physical Chemistry C 2010, 114 (14), 6426-6432.
41. Zhang, W.; Huang, H.; Li, F.; Deng, K.; Wang, X., Palladium nanoparticles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation. Journal of Materials Chemistry A 2014, 2 (44), 19084-19094.
42. Ge, J.; Guo, X.; Xu, X.; Zhang, P.; Zhu, J.; Wang, J., A eutectic mixture of choline chloride and urea as an assisting solvent in the synthesis of flower-like hierarchical BiOCl structures with enhanced photocatalytic activity. RSC Advances 2015, 5 (61), 49598-49605.
43. Li, B.; Huang, H.; Guo, Y.; Zhang, Y., Diatomite-immobilized BiOI hybrid photocatalyst: facile deposition synthesis and enhanced photocatalytic activity. Applied Surface Science 2015, 353, 1179-1185.
44. Gao, W., The chemistry of graphene oxide. In Graphene oxide, Springer: 2015; pp 61-95.
45. Serpone, N.; Lawless, D.; Khairutdinov, R., Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? The journal of Physical Chemistry 1995, 99 (45), 16646-16654.
46. Wang, C.-Y.; Zhang, Y.-J.; Wang, W.-K.; Pei, D.-N.; Huang, G.-X.; Chen, J.-J.; Zhang, X.; Yu, H.-Q., Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Applied Catalysis B: Environmental 2018, 221, 320-328.
47. Yu, Y.; Cao, C.; Liu, H.; Li, P.; Wei, F.; Jiang, Y.; Song, W., A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. Journal of Materials Chemistry A 2014, 2 (6), 1677-1681.
48. Fujishima, Y.; Okamoto, S.; Yoshiba, M.; Itoi, T.; Kawamura, S.; Yoshida, Y.; Ogura, Y.; Izumi, Y., Photofuel cell comprising titanium oxide and bismuth oxychloride (BiO 1− x Cl 1− y) photocatalysts that uses acidic water as a fuel. Journal of Materials Chemistry A 2015, 3 (16), 8389-8404.
49. Li, Y.; Zhao, Y.; Wu, G.; Ma, H.; Zhao, J., Bi superlattice nanopolygons at BiOCl (001) nanosheet assembled architectures for visible-light photocatalysis. Materials Research Bulletin 2018, 101, 39-47.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊