跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宗憲
研究生(外文):Tsai,Tsung-Hsien
論文名稱:採用正交模式饋源的新型近似雙工之波導濾波器設計
論文名稱(外文):A Novel Waveguide Diplexer-like Filter Design Using Orthogonal Mode Feeding
指導教授:洪萬鑄
指導教授(外文):Hong,Wanchu
口試委員:許崇宜何明華洪萬鑄
口試委員(外文):Hsu,Chung-I GHo,Min-HuaHong,Wanchu
口試日期:2017-12-07
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:52
中文關鍵詞:波導管正交模態柴比雪夫帶通濾波器雙工器
外文關鍵詞:waveguidefoilcross-cavitycross metal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文旨在探討以兩種有效縮小結構尺寸的新型近似雙工之波導濾波器設計,利用正交模態(Orthogonal mode)不相互影響的特性來設計兩種新型近似雙工之波導濾波器,分別為K band金屬薄膜形式近似雙工之波導濾波器以及E band十字型結構近似雙工之波導濾波器。提出正交模態不相互影響的特性來設計雙工器的概念在於,傳統波導管雙工器設計使用T形頭結構來連接兩個不同工作頻帶的濾波器,此種設計方法設計出的波導管雙工器往往結構尺寸較大,針對這個問題提出了一個有效縮小結構尺寸的近似雙工之波導濾波器,實現具有廣義柴比雪夫函數響應的雙模濾波器,提高了雙工器的頻率選擇性能,同時也成功的壓縮了波導管雙工器的尺寸。
本論文提出的第一種電路架構為在方形波導管內加上兩個垂直與水平方向的金屬薄片所組成的近似雙工之波導濾波器,兩個金屬薄片之間相差90度且相互不重疊,能量從方形開口饋入利用正交模態不相互影響的特性來設計低頻與高頻兩個頻帶的帶通濾波器,此特性能夠讓兩個不同的通帶在傳輸時互不干擾。第一種電路架構由兩個不同工作頻帶的濾波器組合而成的,設計的低頻與高頻工作頻段包含在K band內,為了方便閱讀這邊將低頻段工作頻率為濾波器I而高頻段工作頻率為濾波器II來區分,濾波器I的中心頻率為21.9 GHz,工作頻帶約21.35 GHz ~ 22.44 GHz,而濾波器II的中心頻率為23.9 GHz,工作頻帶為23.32 GHz ~ 24.48 GHz。
本論文提出的第二種電路架構為五個十字腔體組合而成的近似雙工之波導濾波器,並在十字腔體內加入十字型金屬塊,十字腔體與十字腔體之間加入較小的十字通道,使能量能在兩個十字腔體之間耦合傳輸,饋入的開口與第一種電路架構相似,從方形開口饋入,再透過傳輸轉換結構從方形轉成十字形。此電路架構設計的工作頻段在E band內,濾波器I的中心頻率為58.32 GHz,工作頻帶約57.24 GHz ~ 59.4 GHz,而濾波器II的中心頻率為62.64 GHz,工作頻帶約61.56 GHz ~ 63.72 GHz。
Two classes of cross foil-in square waveguide and five of cross-cavities with cross metal inserted for filter applications.
This thesis present a Square waveguide combined vertical and horizontal foil, feeding from the square opening. The center frequency of low-frequency band filter is 21.9 GHz, having bandwidth from 21.35 GHz to 22.44 GHz. The center frequency of higher-frequency band filter is 23.9 GHz, having bandwidth from 23.32 GHz to 24.48 GHz.
The second structure is combine of five cross-cavity and add cross metal, we keep smaller cavity between cross metals to make sure signal can couple through. The low-frequency band is 58.32 GHz, having bandwidth from 57.24 GHz ~ 59.4 GHz.The higher-frequency band is 62.64 GHz, having bandwidth from 61.56 GHz ~ 63.72 GHz.
摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1研究動機 1
1-2文獻探討 2
1-3論文大綱 4
第二章 波導管特性 5
2-1 概述 5
2-2矩形波導管 5
第三章 微波濾波器原理 9
3-1概述 9
3-2、低通濾波器原型 10
3-2-1、柴比雪夫濾波器 11
3-3、帶通濾波器 15
第四章 K band金屬薄膜形式近似雙工之波導濾波器設計 20
4-1、K band帶通濾波器原型電路 20
4-2、濾波器結構金屬薄膜設計 24
4-2-1、濾波器結構金屬薄膜變形 24
4-2-2、低頻段濾波器I金屬薄膜設計 25
4-2-3、低頻段濾波器II金屬薄膜設計 26
4-3、金屬薄膜形式近似雙工之波導濾波器 32
4-4、金屬薄膜形式近似雙工之波導濾波器加工實作 35
第五章 E band十字型結構近似雙工之波導濾波器設計 36
5-1、E band帶通濾波器原型電路 37
5-2、濾波器十字型結構設計 41
5-3、十字型結構近似雙工之波導濾波器模擬結果 45
第六章 結論及未來展望 49
參考文獻 50
作者簡歷 52
[1] E. Ofli, R. Vahldieck, and S. Amari, “Novel E-plane filters and diplexers with elliptic response for millimeter-wave applications,” IEEE Trans. Microwave Theory Tech., Vol. 53, pp. 843-851, Mar. 2005.
[2] T. Shen, K.A. Zaki, and T.G. Dolan, “Rectangular waveguide diplexers with a circular waveguide common port,” IEEE Trans. Microwave Theory Tech., Vol.51, pp. 578 – 582, Feb. 2003.
[3] N. Mohottige, Z. Golubicic, and D. Budimir, “Compact dielectric filled waveguide filters and diplexers,” IEEE Int. Symp. Antennas and Propagation and CNC/USNC/URSI National Radio Science Meeting (APS2012), Chicago, Illinois, USA, July 8-14, 2012.
[4] N. Mohottige, D. Budimir, Z. Golubicić, and M. Potrebić, “Electromagnetic modelling of dielectric-filled waveguide filters for diplexer applications,” IEEE International Symposium on, USA, July 3-8, 2011.
[5] G. Goussetis, D. Budimir, “E-plane double ridge waveguide filters and diplexers for communication systems,” European Microwave Conference, 31st Oct. 2001, Page(s):1-4, DOI 10.1109 /EUMA.2001.339059
[6] G. Goussetis, D. Budimir, “Waveguide filters with improved stopband performance,” 30th European Microwave Conference Digest, pp. 310-313, 2000
[7] G. Shimonov, K. Garb, and R. Kastner, “Mode matching analysis and design of waveguide E-plane filters and diplexers,” International Workshop on., Portugal, March 1-3, 2010.
[8] J Krupka, “Computations of frequencies and intrinsic Q factors of TE0nm modes of dielectric resonators,” IEEE Trans. on Micro. Theory and Techniques , vol. 33, pp. 274-277, 1985.

[9] R. Gudipati, W.-K. Chen, “Explicit formulas for the design of broadband matching bandpass equalizers with Chebyshev response,” in Proc. IEEE Int. Symp. on Circuits and Syst., ISCAS, Seattle, WA, Apr. 28–May 3 1995, vol. 3, pp. 1644–1647.
[10] N. Athanasopoulos, D. Makris, and K. Voudouris, "Development of a 60 GHz substrate integrated waveguide planar diplexer," in Proc. IEEE MTT-S Workshop Series on MM-Wave Integration Technologies, pp. 128 - 131, Barcelona, Spain, Sep. 2011.
[11] R.C. Daniels, R.W. Heath, “60GHz wireless communications: emerging requirements and design recommendations,” IEEE Vehicular Technology Magazine, vol. 2, no. 3, pp. 41–50, 2007.
[12] W.J. Fleming, “Newautomotive sensors–a review,” IEEE Sensors Journal, vol. 8, no. 11, pp. 1900–1921, 2008.
[13] L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Magazine, vol. 4, no. 3, pp. 39–50, 2003.
[14] U. Hiroshi, T. Takeshi, and M. Fujil, “Development of a ‘laminated waveguide’,” IEEE Transactions onMicrowaveTheory and Techniques, vol. 46, no. 12, pp. 2438–2443, 1998.
[15] D. M. Pozar, Microwave Engineering, Wiley, 4th edition, 2011
[16] En.wikipedia.org., (2017). Wireless Gigabit Alliance., Available: https://en.wikipedia.org/
wiki/Wireless_Gigabit_Alliance
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊