跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳晏丞
研究生(外文):Wu, Yen-Cheng
論文名稱:以麥克風小波轉換及獨立成分分析方法偵測銑削顫振現象
論文名稱(外文):Detecting Chattering Phenomenon of Milling Process Based on Wavelet Transform and Independent Component Analysis via Microphone Sensor
指導教授:黃宜正黃宜正引用關係
指導教授(外文):Huang, Yi-Cheng
口試委員:黃宜正鍾官榮陳昭亮
口試委員(外文):Huang, Yi-ChengChung, Kuan-JungChen, Jau-Liang
口試日期:2018-07-06
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:77
中文關鍵詞:CNC工具機銑削顫振小波轉換獨立成分分析
外文關鍵詞:CNC machine toolMilling chatteringWavelet transformIndependent component analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
典型的加工機運作時的訊號包含了如週期性的滾珠軸承訊號,暫態性的瞬間刀刃的損壞與顫振訊號,還有背景雜訊,在加工過程中偵測這些訊號即時的出現,並且萃取出與時間相關且有意義的訊號有相當大的益處和重要性,因為這是機台潛在的缺陷和產品品質下降的先兆。
本文目標使用麥克風量測三軸CNC工具機銑削鋁合金時的聲音,並利用小波轉換及獨立成分分析分離出對應轉速暫態性的訊號,利用快速傅立葉轉換搭配主軸轉速頻率及刀刃撞擊頻率,並使用主軸負載電流作為顫振出現的佐證,辨識出是否出現發生顫振的頻率。
實驗的結果,能夠從頻譜圖中判斷是否有顫振發生,並且量測表面粗糙度當作基準,顫振發生造成表面產生振紋使粗糙度升高,此機制判斷顫振發生的轉速與否與造成表面粗糙度高低之對應轉速互相吻合。


關鍵字:CNC工具機、銑削顫振、小波轉換、獨立成分分析
Abstract
Typical signals acquired from machine tool involves periodic signal, transient signal and background noise. Transient signal such as cutter breakage and chatter is the issue that leads to deterioration of the product quality. Thus, detecting these signals with considerable and extracting meaningful time-series signal promptly are benefit and significant for research.
In this study, a microphone was used to sense the sound during a 3-axis CNC milling aluminum alloy. The Wavelet Transform and Independent Component Analysis were applied to decompose acquired signal with the aim to extract the chatter signal from sensed signals. The frequency apart from spindle speed and tooth passing frequencies was regarded as the phenomena of chattering. Furthermore, spindle loading current was used as the other evident for judging the onset of chatter.
Experimental results show that the frequency spectrum can be used as the judgement for whether chatter occur or not. Surface roughness is chosen as a benchmark, since chatter lead to high surface roughness. The judgement of chatter occurrence match the variation of the surface roughness.


Keywords: CNC machine tool, Milling chattering, Wavelet transform, Independent component analysis
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1研究背景與動機 1
1-2前言 2
1-3文獻回顧 2
1-4 論文架構 4
第二章 基礎理論 6
2-1銑削加工原理 6
2-2表面粗糙度 9
2-3訊號分析方法 12
2-3-1小波轉換與傅立葉轉換 12
2-3-2獨立成分分析(Independent Component Analysis,ICA) 16
第三章、實驗目的與架設 22
3-1實驗目的 22
3-2實驗機台架設 22
3-2-1本實驗所使用之CNC加工機 22
3-3量測儀器 24
3-3-1頻譜分析儀 24
3-3-2 表面粗度儀 25
3-3-3 PCB 電容式陣列麥克風 27
3-4切削工件材料鋁合金6061 28
3-5電流計DNM-844-50A 28
3-6實驗流程 29
第四章、實驗結果與分析 31
4-1模擬訊號實驗 31
4-2實際振動噪音分析 34
4-2-1切寬3mm切深1mm 36
4-2-2切寬3mm切深2mm 51
4-2-3切寬3mm切深3mm 58
第五章 研究成果與未來展望 64
5.1研究成果 64
5.2未來展望 66
參考文獻 67
附錄A 量測切削聲音步驟 69
附錄B PCA(Principle Component Analysis)流程 73
參考文獻
[1]K.S. Smith, “Automatic Selection of the Optimum Spindle Speed in High Speed Milling,” Ph.D. thesis, University of Florida, Gainesville, 1987.
[2]T. Insperger an Al., “Multiple chatter frequencies in milling process,” Journal of Sound and Vibrations, vol. 262, pp. 333– 345, 2003
[3]Riviére, E, Stalon, V, Van den Abeele, O, Filippi, E, Dehombreux, P. ,”Chatter detection techniques using microphone.” In Seventh national congress on theoretical and applied mechanics, March 2006.
[4]Delio, J. Tlusty, S. Smith ,”Use of audio signals for chatter detection and control,”ASME Journal Engineering for Industry, 114, pp. 146-157, 1992.
[5] C.K. Toh, “Vibration analysis in high speed rough and finish milling hardened steel”, Journal of Sound and Vibration, 278, pp. 101-115, 2004.
[6] C.S. Suh, P.P. Khurjekar, B. Yang,“Characterisation and identification of dynamic instability in milling operation,” Mechanical Systems and Signal Processing, pp. 853-872, 16/5 , 2002.
[7] J. Gradisek, E. Govekar, I. Grabec, “Time series analysis in metal cutting: chatter versus chatter free cutting,” Mechanical System and Signal Processing, pp. 839-854, 1998.
[8] J. H´erault, C. Jutten, and B. Ans, “D´etection de grandeurs primitives dans un message composite par une architecture de calcul neuromim´etique en apprentissage non supervis´e,” in Proc. GRETSI, Nice, France, pp. 1017–1020, 1985.
[9] Aapo Hyvärinen, Juha Karhunen, Erkki Oja, Independent Component Analysis, Wiley-Interscience; 1 edition, May 18, 2001.
[10] Hua Shao, Xinhua Shi, Lin Li, “Power signal separation in milling process based on wavelet transform and independent component analysis ,”International Journal of Machine Tools and Manufacture, 2011.
[11] 洪良德,「切削刀具學」,全華圖書,2016
[12]https://kknews.cc/news/qjka29y.html
[13]http://www.harveyperformance.com/in-the-loupe/conventional-vs-climb-milling/
[14] 碧威股份有限公司技術文件http://tw.tool-tool.com/news/201112/conventional-milling-and-climb-milling/
[15]李昭佐、劉懿賢、陳明華,端銑刀之傾角、螺旋角與鍍膜對銑削硬鋼工件表面粗糙度之影響。中國機械工程學會第二十四屆全國學術研討會論文集(2007)。論文編號:D01-0022。
[16] 鑫辰科技立可修技術分享:DIS002金屬表面粗糙度的定義及量測方法, http://www.liqfix.com.tw/discussion/dis002.html
[17] Gao, Robert X, Yan, Ruqiang, Wavelets Theory and Applications for Manufacturing, January, 2010.
[18] ]I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure Applied Math, pp. 909-996, 1988
[19] N. M. Temme, ”Asymptotics and Numerics of Zeros of Polynomials That Are Related to Daubechies Wavelets,” Applied and Computational Harmonic Analysis, pp. 414-428, 1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top