跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張博翔
研究生(外文):Chang, Po-Hsiang
論文名稱:將中碳鏈三甘油酯以低溫化學法合成及酵素甘油解法製備高純度雙甘油酯
論文名稱(外文):High-purity diacylglycerol prepared from medium chain triglyceride by low-temperature chemical synthesis and enzymatic glycerolysis
指導教授:徐錫樑徐錫樑引用關係
指導教授(外文):Shyu, Shyi-Liang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:115
中文關鍵詞:中碳鏈三甘油酯雙甘油酯低溫化學合成法酵素甘油解法氧化安定性
外文關鍵詞:Medium chain triglyceridediacylglycerollow temperature chemical synthesisenzymatic glycerolysisoxidation stability
相關次數:
  • 被引用被引用:2
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討中碳鏈脂肪酸之雙甘油酯製備方法,以液液萃取及矽膠管柱進行純化得到高純度的 1,3-DAG,並測定其理化性質及加速儲存試驗。以含有辛酸及癸酸之中碳鏈三甘油酯 (Medium Chain Triglyceride, MCT) 為原料,利用低溫化學合成法 (low temperature chemical synthesis, LTCS) 與酵素甘油解法 (enzyme glycerol, EG) 製備雙甘油酯 (diacylglycerol, DAG)。 LTCS 的最適製備條件是將 MCT 加入 2 莫耳比 (油/甘油) 之甘油於 50°C 下反應 6 小時,並以丙酮作為溶劑。DAG 的產量可達 49.99%。EG 的最適條件是將 MCT 加入 10% 之脂肪酶,並加入 2 莫耳比 (油/甘油) 之甘油,於 50 °C 下反應 8 小時,DAG 的產量可達 44.14%。粗 DAG 經純化之後,LTCS (丙酮) 製備之 1,3-DAG 含量為 24.62%,此結果表示約有 50% 的 DAG 是 1,3-DAG。 LTCS (乙醇) 製備之 1,3-DAG 含量為 12.96%,此結果表示約有 41% 的 DAG 是 1,3-DAG。 EG 製備之 1,3-DAG 含量則為 19.38%,此結果表示約有 44% 之 DAG為 1,3-DAG。 LTCS 或 EG 製備之 1,3-DAG 其物理特性,包含熔點、黏度及折射率皆比 MCT 來的高,但發煙點比 MCT 低。另一方面,化學特性包含酸價、過氧化價、茴香胺價及 TBA 價皆很低。因此, LTCS 或 EG 皆可製得品質良好的中碳鏈 1,3-DAG。在加速儲存試驗中, LTCS 製備之 1,3-DAG 的酸價、過氧化價、茴香胺價以及 TBA 價均高於 EG。然而, LTCS (乙醇) 製備之 1,3-DAG 的總脂肪酸含量低於其他樣品。LTCS 製備之 1,3-DAG的折射率以及油脂色澤高於 EG。此表示 EG 製備之 1,3-DAG 的氧化安定性較佳。
This study was to investigate a diglyceride containing a medium-chain fatty acid, which was purified by liquid-liquid extraction and column fractionation to obtain high-purity 1,3-DAG, and determined its physicochemical properties and accelerated storage test. Diacylglycerol (DAG) was prepared from MCT (mediun chain triglyceride) contained octanoic acid and decanoic acid by low temperature chemical synthesis (LTCS) and enzyme glycerolysis (EG). The optimal condition of LTCS was: MCT/glycerol ratio of 2 mol, reaction temperature of 50°C, reaction time of 6 hrs and acetone as solvent. The yield of DAG could reach up to 49.99% by using this reaction condition. In addition, the optimal condition of EG was: MCT/glycerol ratio of 2 mol, reaction temperature of 50°C and reaction time of 8 hrs. As the DAG was prepared by this condition, the yield of DAG was maximized to 44.14%. After column purification, the 1,3-DAG content of the crude DAG prepared by LTCS (acetone) was 24.62%. This result indicated that the content of 1,3-DAG was about 50% in purified DAG. The 1,3-DAG content of the crude DAG prepared by LTCS (ethanol) was 12.96%. This result indicated that the content of 1,3-DAG was about 41% in purified DAG. On the other hand, the 1,3-DAG content of the crude DAG prepared by EG was 19.38%. This result indicated that the content of 1,3-DAG was around 44% in purified DAG. The physical properties (including melting point, viscosity and refractive index) of 1,3-DAG prepared by LTCS or EG were all higher than that of MCT while the smoke point was slightly lower. On the other hand, the chemical properties (including acid value, peroxide value, p-anisidine value and TBA value) of 1,3-DAG prepared by LTCS and EG were all very low. Therefore, medium-chain 1,3-DAG prepared by LTCS or EG had a good quality. In the accelerated storage test, the acid value, peroxide value, p-anisidine value, and TBA value of 1,3-DAG prepared by LTCS were slightly higher than that of EG. However, the total fatty acid content of 1,3-DAG prepared by LTCS (ethanol) was the lowest among samples. Refractive index and oil color of 1,3-DAG prepared by LTCS was higher than that of EG. This indicates that the 1,3-DAG prepared by EG was a best oxidation stability.
摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 X
表目錄 XII
壹、前言 1
貳、文獻整理 3
一、中碳鏈三甘油酯 3
(一) 簡介 3
(二) 理化特性 3
(三) MCT 之合成方法 5
(四) 安全性 5
(五) MCT 代謝特色 6
(六) MCT 對體重和體脂的影響 8
1. MCT 對體重的影響 8
2. MCT 對血脂的影響 9
(七) MCT 的應用 10
1. 嬰幼兒食品之應用 10
2. 運動食品中之應用 10
3. 醫藥及病患食品之應用 10
4. 減肥產品之應用 11
5. 化妝品之應用 11
6. 其他食品工業之應用 11
二、 雙甘油酯 12
(一) 簡介 12
(二) 理化特性 12
(三) DAG 之合成方法 14
1. 甘油解法 14
2. 甘油與脂肪酸直接酯化法 16
3. 酯交換法 16
4. 水解法 16
5. 先水解後酯化法 17
(四) 安全性 17
1. 膳食毒性 17
2. 致癌性 17
(五) DAG代謝特色 18
(七) DAG 的應用 18
1. 烘焙產品的應用 18
2. 即溶飲品之應用 19
3. 食品保鮮之應用 19
4. 低熱量產品之應用 20
5. 醫藥產品之應用 20
6. 工業上之應用 20
三、油脂替代物 (fat replacer) 20
(一) 蛋白質基質合成之油脂替代物 21
(二) 油脂基質合成之油脂替代物 23
(三) 碳水化合物基質合成之油脂替代物 25
四、脂肪酶 26
(一) 簡介 26
(二) 特異性 26
(三) 應用 27
五、油脂之氧化反應 27
六、溶劑之特性 29
七、DAG 之分析方法 32
(一) 高效液相層析法 32
(二) 氣相層析法 34
(三) 薄層層析法 34
八、DAG 之純化方法 35
(一) 分子蒸餾法 35
(二) 管柱層析法 35
(三) 溶劑結晶法 36
(四) 液液萃取法 36
(五) 超臨界二氧化碳萃取法 36
參、材料與方法 38
一、實驗架構 38
(一) 1,3-雙甘油酯製備 38
(二) 1,3-雙甘油酯理化特性探討 39
(三) 加速儲存試驗 40
(一) 實驗樣品 41
(二) 實驗藥品與儀器 41
1. 實驗藥品 41
2. 實驗儀器 42
(三) 實驗方法 43
1. 1,3-雙甘油酯製備 43
(1) 低溫化學合成法 43
(2) 酵素甘油解法 43
2. 雙甘油酯之純化方法 43
(1) 液液萃取 43
(2) 管柱層析 44
3. 甘油酯組成分析 44
4. 1,3-雙甘油酯之理化特性探討 45
(1) 1,3-雙甘油酯之物理特性之探討 45
(2) 1,3-雙甘油酯的化學特性之探討 46
5. 加速儲存試驗 50
6. 統計分析 50
肆、結果與討論 51
一、低溫化學法合成雙甘油酯最適條件之探討 51
(一) MCT/甘油莫耳比 51
(二) 溫度 54
(三) 溶劑 56
(四) 時間 58
二、酵素甘油解法合成雙甘油酯最適條件之探討 60
(一) MCT/甘油莫耳比 60
(二) 溫度 62
(三) 酵素添加量 62
(四) 時間 65
三、低溫化學法合成與酵素甘油解法製備雙甘油酯之比較 68
四、純化中碳鏈 1,3-雙甘油酯含量之探討 70
五、中碳鏈 1,3-雙甘油酯之理化特性 73
(一) 物理特性 73
1. 熔點 73
2. 折射率 73
3. 黏度 75
4. 發煙點 75
5. 色澤 76
(二) 化學特性 76
1. 酸價 76
2. 過氧化價 79
3. 硫巴比妥酸價 79
4. 茴香胺價 80
5. 脂肪酸組成 80
六、中碳鏈1,3-雙甘油酯之加速儲藏試驗 82
(一) 物理方法測定 82
1. 折射率 82
2. 色澤 82
(二) 化學方法測定 85
1. 酸價 85
2. 過氧化價 87
3. 硫巴比妥酸價 87
4. 茴香胺價 90
5. 脂肪酸組成 92
伍、結論 94
陸、參考文獻 96
1. 王誌宏:1,3-二脂肪酸甘油酯之製備方法之研究,國立臺灣大學農業化學研究所碩士學位論文 (2000)。
2. 王俊芳和劉來亭:變性澱粉用作油脂替代物工藝條件的確定,糧食科技與經濟,27: 35-37 (2002)。
3. 李建成: 甘油辛癸酸酯的應用,日用化學工業,5: 47-50 (1995)。
4. 貝雷:油脂化學與工藝學,輕工出版社,273-280 (1988)
5. 周曙光和歐陽靜:辛癸酸甘油酯及其在日化中的應用,四川日化,(4):12-13 (1996)
6. 涂向輝、邱壽寬和袁永紅:中鏈甘油三酯,西部糧油科技,6:45-48 (2002)。
7. 孫淑霞: 中鏈三酸甘油酯,糧油科技,3: 45-46 (1992)。
8. 孫登文和湛日景:用溶劑結晶法分離單脂肪酸甘油酯的工藝,專利:CN1074898A (1992)。
9. 夏詠梅:脂肪酶無溶劑合成單甘酯的研究。無錫輕工大學,93-101 (2001)。
10. 張月紅、劉英華、王覲、張永、張榮欣、于曉明、景洪江、薛長勇和吳堅:中長鏈脂肪酸食用油降低超重高甘油三酯患者血脂和低密度脂蛋白膽固醇水平的研究,中國食品學報,10 (2):20 -26 (2010)。
11. 張為憲、孫璐西、李敏雄和林慶文:食品化學,華香園出版社 (1995)。
12. 楊天奎、楊柳和牟英:偏甘油酯的製備方法。專利: CN102191134A (2011)。
13. 楊哲儒:中碳鏈三酸甘油酯之氧化安定性及低熱量蛋黃醬之製備。國立嘉義大學食品科學研究所碩士學位論文 (2008)。
14. 楊博、王旋和王永華:甘油二酯的生產方法。專利:CN1438308 (2003)。
15. 齊陽和蔡東聯:中鏈甘油三酯的研究進展與展望,醫學研究雜誌,42 (5):13-15 (2013)。
16. 劉四磊、劉偉、董續燕、魏芳、王湘、呂昕、鍾娟、吳琳和陳洪,中國油料作物學報,37 (1): 106-112 (2015)。
17. 蔡羽豐:將大豆油以低溫化學法合成及酵素甘油解法製備高純度雙甘油酯,國立嘉義大學食品科學研究所碩士學位論文 (2016)。
18. 謝黔嶺、胡鵬楊和波濤:含有甘油二酯的油脂組合物及含有該油脂組合物的奶油、煎炸油及食品.專利: CN1656907A (2004)。
19. 謝黔嶺、胡鵬和楊波濤:含有甘油二酯的油脂的化學生產方法。專利: CN1635068A (2003)。
20. Abdulkarim, S. M., Long, K., Lai, O. M., Muhammad, S. K. S. and Ghazali, H. M.: Frying quality and stability of high-oleic Moringa oleifera seed oil in comparison with other vegetable oils. Food Chemistry, 105:1382-1389 (2007).
21. Ash M. and Ash‎ I.: Handbook of fillers, extenders, and diluents. P.244 (2007).
22. Akoh C. C. and Decker E. A.: Lipid‐based fat substitutes. Critical Reviews in Food Science & Nutrition, 35(5): 405-430 (1995).
23. Alencar J., Alves P. and Craveiro A.: Pyrolysis of tropical vegetable oils. Journal of Agricultural and Food Chemistry, 31(6): 1268-1270 (1983).
24. Aniołowska M. and Agnieszka K.: The effect of type of oil and degree of degradation on glycidyl esters content during the frying of french fries. Journal of the American Oil Chemists' Society, 92 (11–12): 1621–1631 (2015).
25. Akon C. C.: Fat Replacers. Scientific Status Summery, 52 (3): 47-53 (1998).
26. Arroyo M. and Sinisterra J. V.: High enantioselective esterification of 2-arylpropionic acids catalyzed by immobilized lipase from candida antarctica: a mechanistic approach. The Journal of Organic Chemistry, 59(16): 4410-4417 (1994).
27. Bach A. C. and Babayan V. K.: Medium-chain triglycerides: an update. The American Journal of Clinical Nutrition, 36(5): 950-962 (1982).
28. Benson F.: Polyol surfactants. Nonionic Surfactants, 247-299 (1967).
29. Berman W.: Medium‐chain triglyceride diet in the treatment of intractable Childhood Epilepsy. Developmental Medicine & Child Neurology, 20(2): 249-250 (1978).
30. Blasil F., Cossignani M., Simonetti S. and Damiani P.: Biocatalysed synthesis of sn-1,3-diacylglycerol oil from extra virgin olive oil. Enzyme and Microbial Technology, 41(6–7): 727-732 (2007).
31. Bellot J. C., Choisnard L., Castillo E. and Marty A.: Combining solvent engineering and thermodynamic modeling to enhance selectivity during monoglyceride synthesis by lipase-catalyzed esterification. Enzyme and Microbial Technology, 28: 362-369 (2001).
32. Bockish M.: Composition, structure, physical data, and chemical reactions of fats and oils, their derivatives, and their associates. Fats and Oils Handbook, 53-120 (1998).
33. Bodor J. and Heteren J. V.: Fat containing diglycerides. Patents: US4656045A.(1984)
34. Brand-Williams W., Cuvelier M.-E. and Berset C.: Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1): 25-30 (1995).
35. Bray G., Lee M. and Bray T.: Weight gain of rats fed medium-chain triglycerides is less than rats fed long-chain triglycerides. International Journal of Obesity, 4(1): 27-32 (1980).
36. Brockerhoff H.: Lipolytic enzymes. Advances in Chemistry, 5 (136): 131–145 (1974).
37. Bray G. A.: Treatment for obesity: a nutrient balance/nutrient partition Approach. Nutrition reviews, 49(2): 33-45 (1991).
38. Bremer J.: Carnitine--metabolism and functions. Physiological Reviews, 63(4): 1420-1480 (1983).
39. Brodnitz M. H.: Autoxidation of saturated fatty acids. a review. Journal of Agricultural and Food Chemistry, 16(6): 994-999 (1968).
40. Burghart W. and Burghart K.: Pharmaceutical preparation and methods for its production. Patents: US4863720A (1989).
41. Butterbaugh J. L. and Sargent J. A.: Dissolution agent and process for making rapidly soluble instant beverage products. Patents: US6291006B1 (2001).
42. Cai C., Gao Y., Liu Y., Zhong N. and Liu N.: Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis. Food Chemistry, 212: 205-212 (2016).
43. Chugh B and Dhawan K.: Storage studies on mustard oil blends. J Food Sci Technol, 51 (4): 762-767 (2014).
44. Chavan R., Khedkar C. and Bhatt S.: Fat replacer. Encyclopedia of Food and Health, 589-595 (2016).
45. Cheng H.: Volatile flavor compounds in yogurt: a review. Critical Reviews in Food Science and Nutrition, 50(10): 938-950 (2010).
46. Chen B., Guo Z., Tan T. and Xu X.: Structures of ionic liquids dictate the conversion and selectivity of enzymatic glycerolysis: theoretical characterization by COSMO‐RS. Biotechnology and Bioengineering. 99 (1): 18-29 (2008).
47. Chengelis C. P., Kirkpatrick J. B., Bruner R. H., Freshwater L., Morita O., Tamaki Y. and Suzuki H. A.: 24-Month dietary carcinogenicity study of DAG (diacylglycerol) in rats. Food and Chemical Toxicology, 44(1): 98-121 (2006).
48. Chemat F., Grondin I., Costes P., Moutoussamy L., Shum A., Cheong S. and Smadja J.: High power ultrasound effects on lipid oxidation of refined sunflower oil. Ultrasonics Sonochemistry 11 (5): 281-285 (2004).
49. Cheong L. Z., Tan C. P., Long K., Yusoff M. S. A., Arifin N., Lo S. K. and Lai O. M.: Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: optimization using response surface methodology. Food Chemistry, 105(4): 1614-1622 (2007).
50. Chong Y. M., Chang S. K., Sia W. C. M. and Yim H. S.: Antioxidant efficacy of mangosteen (garcinia mangostana linn.) peel extracts in sunflower oil during accelerated storage. Food Bioscience, 12: 18-25 (2015).
51. Chung C., Degner B. and McClements D. J.: Reduced calorie emulsion-based foods: protein microparticles and dietary fiber as fat replacers. Food Research International, 64: 664-676 (2014).
52. Craven R. J. and Lencki R. W.: Preparation of diacid 1,3-diacylglycerols. Journal of the American Oil Chemists' Society, 87(11): 1281-129 (2010).
53. Craig C., Darnell B., Weinsier R., Saag M., Epps L., Mullins L., Lapidus W., Ennis D., Akrabawi S. and Cornwell P.: Decreased fat and nitrogen losses in patients with AIDS receiving medium-chain-triglyceride-enriched formula vs those receiving long-chain-triglyceride-containing formula. Journal of the Academy of Nutrition and Dietetics, 97(6): 605-611 (1997).
54. Dayrit F. M.: Lauric acid is a medium-chain fatty acid, coconut oil is a medium-chain triglyceride. Philippine Journal of Science, 143(2): 157-166 (2014).
55. Dean A., Lao Jr., Sonia D. and Glenn C.: Preparation and composition of medium chain triglycerides containing substantial amount of lauric acid. Patent: WO2016007026A1 (2016).
56. Damstrup M.L., Jensen T., Sparsø F.V., Kiil S.Z., Jensen A.D. and Xu X.: Solvent optimization for efficient enzymatic monoacylglycerol production based on a glycerolysis reaction. Journal of the American Oil Chemists' Society, 82: 559-564 (2005).
57. Decombaz J., Arnaud M. J., Milon H., Moesch H., Philippossian G., Thelin A. L. and Howald H.: Energy metabolism of medium-chain triglycerides versus carbohydrates during exercise. European Journal of Applied Physiology and Occupational Physiology, 52(1): 9-14 (1983).
58. Desnuelle P.: The lipases. The Enzymes, 7(19): 575-616 (1972).
59. Doucet J.: Shortening system, products therewith, and methods for making and using the same. Patents: US5908655A (1999).
60. Dulloo A. G., Mensi N., Seydoux J. and Girardier L.: Differential effects of high-fat diets varying in fatty acid composition on the efficiency of lean and fat tissue deposition during weight recovery after low food intake. Metabolism-Clinical and Experimental, 44(2): 273-279 (1995).
61. Erickson D. R.: Practical handbook of soybean processing and utilization, (1995).
62. Faber K.: Biotrasformation in organic chemistry. Berlin Heidelberg:
Springe-Verlag. 68 (1997).
63. Feltes M. M. C., Oliveira D., Block J. M. and Ninow J. L.: The production, benefits, and applications of monoacylglycerols and diacylglycerols of nutritional interest. Food and Bioprocess Technology, 6(1): 17-35 (2013).
64. Flickinger B. D. and Matsuo N.: Nutritional characteristics of DAG oil. Lipids, 38(2): 129 (2003).
65. Formo M. W.: Physical properties of fats and fatty acids. Bailey’s Industrial Oil and Fat Products, 1(4): 177-232 (1979).
66. Fregolente P. B. L., Pinto G. M. F., Wolf-Maciel M. R. and Maciel F. R.: Monoglyceride and diglyceride production through lipase-catalyzed glycerolysis and molecular distillation. Applied Biochemistry and Biotechnology, 160(7): 1879-1887 (2010).
67. Friedman H. I. and Nylund B.: Intestinal fat digestion, absorption, and transport. a review. American Journal of Clinical Nutrition (USA) 33(5):1108-39 (1980).
68. Gotoh N., Watanabe H., Nishide T. and Yasukawa T.: General-purpose oils composition. Patents: US6004611A (1999).
69. Giese, J.: Fats, Oils, and fat replacers. Food Technol., 50(4): 78-84 (1996).
70. Grant E. and Halstead B. J.: Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27(3): 213-224 (1998).
71. Goto M., Honda K., Di l. and Small D. M.: Crytal structure of a mixed chain diacylglycerol, 1-Stearoyl-3-oleyl-glcerol. Journal of Lipid Research. 36: 2185-2190 (1995).
72. Haidukewych D., Forsythe W. and Sills M.: Monitoring octanoic and decanoic acids in plasma from children with intractable epilepsy treated with medium-chain triglyceride diet. Clinical Chemistry, 28(4): 642-645 (1982).
73. Heydinger J. A. and Nakhasi D.: Medium carbon chain triglyceride. Journal of Food Lipids, 3 (4): 251-257 (1996).
74. Hasan F., Shah A. A. and Hameed A.: Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2): 235-251 (2006).
75. Haugaard V. K., Udsen A. M., Mortensen G., Høegh L., Petersen K. and Monahan F.: Potential food applications of biobased materials: an EU‐concerted action project. Starch‐Stärke, 53(5): 189-200 (2001).
76. Hayasaka K., Numakura C., Toyota K., Kakizaki S., Watanabe H., Haga H., Takahashi H., Takahashi Y., Kaneko M. and Yamakawa M.: Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Molecular Genetics and Metabolism Reports, 1: 42-50 (2014).
77. Health U. D. O. and Services H.: Nutrition and your health: dietary guidelines for americans. HG Bulletin, 232 (1990).
78. Heine C., Wust R. and Kamp B.: Process for preserving the freshness of fresh meat using acetylated fatty acid mono-, di-, and triglycerides. Patents: US4137334A (1979).
79. Hershberg E.: Preparation of tricaprylin. Journal of the American Chemical Society, 61(12): 3587-3588 (1939).
80. Hill J., Peters J., Swift L., Yang D., Sharp T., Abumrad N. and Greene H.: Changes in blood lipids during six days of overfeeding with medium or long chain triglycerides. Journal of Lipid Research, 31(3): 407-416 (1990).
81. Isabel J., Karina V., Alejandro C. and Antonio P.: Process for obtaining vegetable oil rich in 1,3- diacylglycerols. European Patent, WO2016079671 A1 (2015).
82. Iqbal S. and Bhanger M. I.: Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chemistry, 100 (1): 246-254 (2007).
83. Jacobs L., Lee I. and Poppe G.:Chemical process for the production of 1,3-diglyceride oils. Patents: US7081542B2 (2006).
84. Jensen R. G., DeJong F. A. and Clark R. M.: Determination of lipase specificity. Lipids, 18 (3): 239-252 (1983).
85. Kamphuis M. M., Mela D. J. and Westerterp-Plantenga M. S.: Diacylglycerols affect substrate oxidation and appetite in humans. The American Journal of Clinical Nutrition, 77(5): 1133-1139 (2003).
86. Kazlauskas R. J. and Bornscheur U. T.: Biotransformations with lipases. Biotechnology, 37-192 (1998).
87. Kaufman V. R. and Gartic N.: Organic reactions in emulsions preparation of glycerol and polyglycerolesters of fatty acids by transesterification reaction. Journal of the American Oil Chemists Society, 59(11): 471–474 (1982).
88. Kasai M., Nosaka N., Aoyama T., Ooyama K., Uto H., Okazaki M., Igarashi O. and Kondo K.: Effect of medium-chain triglycerides on the postprandial triglyceride concentration in healthy men. Bioscience, Biotechnology, and Biochemistry, 67(1): 46-53 (2003).
89. Kanner J, Gorelik S, Roman S and Kohen R.: Protection by polyphenols of postprandial human plasma and low-density lipoprotein modification: the stomach as a bioreactor. J Agric Food Chem, 60 (36):8790-8796 (2012).
90. Kim S. and Rhee J.: Production of medium-chain glycerides by immobilized lipase in a solvent-free system. Journal of the American Oil Chemists’ Society, 68(7): 499-503 (1991).
91. Kim I. H. and Lee S. M.: Synthesis of diacylglycerols containing CLA by lipase catalyzed esterification. Journal of Food Science,71(7):378-382 (2006).
92. Kim N. and Choe E.: Singlet oxygen‐related photooxidative stability and antioxidant changes of diacylglycerol‐rich oil derived from mixture of olive and perilla oil. Journal of Food Science, 77: 1185-1191 (2012).
93. Kondo H., Hase T., Murase T. and Tokimitsu I.: Digestion and assimilation features of dietary DAG in the rat small intestine. Lipids, 38(1): 25-30 (2003).
94. Krauss R. M., Deckelbaum R. J., Ernst N., Fisher E., Howard B. V., Knopp R. H., Kotchen T., Lichtenstein A. H., McGill H. C. and Pearson T. A.: Dietary guidelines for healthy american adults: a statement for health professionals from the nutrition committee, american heart association. Circulation, 94(7): 1795-1800 (1996).
95. Krotkiewski M.: Value of VLCD supplementation with medium chain triglycerides. International Journal of Obesity, 25(9): 1393 (2001).
96. Label F.: Structured lipid: the new fat. Food Processing, 2:52 (1991)
97. Lai O.: Diacylglycerol oils: nutritional aspects and applications in foods. Reducing Saturated Fats in Foods, 158-178 (2011).
98. Lai O., Akoh, C. and Weete, J.: Microbial lipases. Food Lipids: Chemistry, Nutrition, and Biotechnology, 3: 767-806 (2007).
99. Lee K. T. and Akoh C. C.: Effects of selected substrate forms on the synthesis of structured lipids by two immobilized lipases. Journal of the American Oil Chemists' Society, 74(5): 579-584 (1997).
100. Lehner R., Kuksis A. and Itabashi Y.: Stereospecificity of monoacylglycerol and diacylglycerol acyltransferases from rat intestine as determined by chiral phase high-performance liquid chromatography. Lipids, 28(1): 29-34 (1993).
101. Leland J. V.: Flavor interactions: the greater whole. Food Technology (USA) 51(1): 75-80 (1997).
102. Lin S., Casimir C. and Akoh A.: The recovery of used frying oils with various adsorbents. Journal of Food Lipids 5 (1): 1-16 (1998).
103. Lide D. R.: Octanol-water partition coefficients. In: Handbook of Chemistry and Physics 96: 16-42 (2016).
104. Linfield W. M., Barauskas R. A., Sivieri L., Serota S. and Stevenson R. W.: Enzymatic fat hydrolysis and synthesis. Journal of the American Oil Chemists’ Society, 61(2): 191-195 (1984).
105. Litwinienko G., Daniluk A. and Kasprzycka-Guttman T.: A differential scanning calorimetry study on the oxidation of C 12-C 18 saturated fatty acids and their esters. Journal of the American Oil Chemists' Society, 76(6): 655-657 (1999).
106. Liu J., Lee T., Bobik E., Guzman-Harty M. and Hastilow C.: Quantitative determination of monoglycerides and diglycerides by high-performance liquid chromatography and evaporative light-scattering detection. Journal of the American Oil Chemists’ Society, 70(4): 343-347 (1993).
107. Livingstone S.: Ketogenic diet in the treatment of childhood epilepsy. Dev Med Child Neurol, 19: 833-834 (1977).
108. Lolos M., Oreopoulou V. and Tzia C.: Oxidative stability of potato chips: effect of frying oil type, temperature and antioxidants. J Sci Food Agric., 79(11): 1524-1528. (1999).
109. Lo S., Baharin B., Tan C. and Lai O.: Analysis of 1, 2 (2, 3)-and 1, 3-positional isomers of diacylglycerols from vegetable oils by reversed-phase high-performance liquid chromatography. Journal of Chromatographic Science, 42(3): 145-154 (2004).
110. Macrae A.: Lipase-catalyzed interesterification of oils and fats. Journal of the American Oil Chemists’ Society, 60(2): 291-294 (1983).
111. Maki K. C., Davidson M. H., Tsushima R., Matsuo N., Tokimitsu I., Umporowicz D. M., Dicklin M. R., Foster G. S., Ingram K. A. and Anderson B. D.: Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. The American Journal of Clinical Nutrition, 76(6): 1230-1236 (2002).
112. Mansbach C. M. and Nevin P.: Intracellular movement of triacylglycerols in the intestine. Journal of Lipid Research, 39(5): 963-968 (1998).
113. Mascioli E. A., Babayan V. K., Bistrian B. R. and Blackburn G. L.: Novel triglycerides for special medical purposes. Journal of Parenteral and Enteral Nutrition, 12(6): 127-132 (1988).
114. Masui K., Katsuragi Y., Toi T. and Yasukawa T.: Fat or oil composition. Patents: US6495536B1 (2002).
115. Masui K., Yasunaga K., Nishide T., Nakajima Y. and Yasukawa T.: Physicochemical and frying characteristics of oil high in diacylglycerol. The 2001 PIPC International Palm Oil Congress, 8: 20-21 (2001).
116. Maskan M.: Change in colour and rheological behaviour of sunflower seed oil during frying and after adsorbent treatment of used oil. Eur. Food Res. Technol., 218: 20-25 (2003).
117. McSweeney P. L. and Sousa M. J.: Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Le Lait, 80(3): 293-324 (2000).
118. Megremis C. J.: Medium-chain triglycerides: a nonconventional fat. Food Technology (USA) 45(2):108-114 (1991).
119. Meng X., Zou D., Shi Z., Duan Z. and Mao Z.: Dietary diacylglycerol prevents high‐fat diet‐induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids, 39(1): 37-41 (2004).
120. Merten H. L.: Low calorie lipids. Journal of Agricultural and Food Chemistry, 18(6): 1002-1004 (1970).
121. Mott C., Sarles H. and Tiscornia O.: Different action of short, medium, and long chain triglycerides on exocrine pancreatic secretion in man. Biologie et Gastro-Enterologie, 5(1): 79-84 (1972).
122. Murase T., Mizuno T., Omachi T., Onizawa K., Komine Y., Kondo H., Hase T. and Tokimitsu I.: Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice. Journal of Lipid Research, 42(3): 372-378 (2001).
123. Murase T., Aoki M., Wakisaka T., Hase T. and Tokimitsu I.: Anti-obesity effect of dietary diacylglycerol in C57BL/6J mice Dietary Diacylglycerol Stimulates Intestinal Lipid Metabolism. Journal of Lipid Research, 43(8): 1312-1319 (2002a).
124. Murase T., Nagasawa A., Suzuki J., Wakisaka T., Hase T. and Tokimitsu I.: Dietary α-linolenic acid–rich diacylglycerols reduce body weight gain accompanying the stimulation of intestinal β-oxidation and related gene expressions in C57BL/KsJ-db/db mice. The Journal of Nutrition, 132(10): 3018-3022 (2002b).
125. Matsuo N. and Tokimitsu I.: Metabolic characteristics of diacyglycerol: an edible oil that is less likely to become body fat. Biochemistry, 12: 1098-1102 (2001).
126. Matsuo T, Matsuo M and Kasai M.: Effects of a liquid diet supplement containing structured medium and long-chain triacylglycerols on body fat accumulation in healthy young subjects. Asia Pac. J. Clin. Nutr., 10: 46-50 (2001)
127. Murata M., Hara K. and Ide T.: Alteration by diacylglycerols of the transport and fatty acid composition of lymph chylomicrons in rats. Bioscience, Biotechnology, and Biochemistry, 58(8): 1416-1419 (1994).
128. Murata M., Ide T. and Hara K.: Reciprocal responses to dietary diacylglycerol of hepatic enzymes of fatty acid synthesis and oxidation in the rat. British Journal of Nutrition, 77(1): 107-121 (1997).
129. Nagao T., Watanabe H., Goto N., Onizawa K., Taguchi H., Matsuo N., Yasukawa T., Tsushima R., Shimasaki H. and Itakura H.: Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. The Journal of Nutrition, 130(4): 792-797 (2000).
130. Nakajima Y., Fukasawa J. and Shimada A.: Physicochemical properties of diacylglycerol. Diacylglycerol Oil, 183-196 (2004).
131. Nebeling L. C. and Lerner E.: Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. Journal of the American Dietetic Association, 95(6): 693-697 (1995).
132. Ney K.: Sensogamme, eine methodische erwiterung der aromagramme. Gordian, 88(1): 19 (1988).
133. Nishide T., Tsuchiya S., Koike S., Nakajima Y., Inagawa Y., Yano M. and Kawaseki Y.: Oil or fat compositions. Patents: US20040156972A1 (2007).
134. Nikolaus W. and Kumar D.M.: Solvent-lipase-catalyzed preparation of diacylglycerols. J. Agric. Food Chem, 52 (17): 5347–5353 (2004).
135. Noguchi O., Takeuchi H., Kubota F., Tsuji H. and Aoyama T.: Larger diet-induced thermogenesis and less body fat accumulation in rats fed medium-chain triacylglycerols than in those fed long-chain triacylglycerols. Journal of Nutritional Science and Vitaminology, 48(6): 524-529 (2002).
136. Noureddini H. and Harmeier S.: Enzymatic glycerolysis of soybean oil. Journal of the American Oil Chemists' Society, 75(10): 1359-1365 (1998).
137. O’Keefe S. F. and Pike O. A.: Fat characterization. Food Analysis, 239-260 (2010).
138. Paiter L., Galvão J. R., Junior S. and Luiz S.: Empirical study of the degradation of soybean oil correlated with its dielectric constant based on capacitive sensor. Matéria (Rio de Janeiro), 20(2): 392-398 (2015).
139. Park R. K. and Lee K. T.: Synthesis and characterization of mono- and diacylglycerol enriched functional oil by enzymatic glycerolysis of corn oil. Korean J. Food Sci. Technol., 36: 211-216 (2004).
140. Park K. M., Kwon O. T., Ahn S. M., Lee J. and Chang P.-S.: Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system. New Biotechnology, 27(1): 46-52 (2010).
141. Pawongrat R., Xu X. and Aran H.: Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chemistry, 104(1): 251-258 (2007).
142. Pereira A. F. C., Pontes M. J. C., Neto F. F. G., Santos S. R. B., Galvão R. K. H. and Araújo M. C. U.: NIR spectrometric determination of quality parameters in vegetable oils using IPLS and variable selection. Food Research International, 41 (4): 341-348 (2008).
143. Perkins E.: Formation of non-volatile decomposition products in heated fats and oils. Food Technology, 21: 611 (1967).
144. Peter S. K., Weidner E. O., Ender U. M. and Czech B. A.: Process for the recovery of monoglycerides and diglycerides from a mixture containing monoglycerides, diglycerides, and triglycerides. Patents: US5110509A (1992).
145. Pfeuffer M. and Schrezenmeir J.: Milk lipids in diet and health: medium chain fatty acids (MCFA). Bulletin-International Dairy Federation, 377: 32-42 (2002).
146. Plank C. and Lorbeer E.: Simultaneous determination of glycerol, and mono-, di-and triglycerides in vegetable oil methyl esters by capillary gas chromatography. Journal of Chromatography A, 697(1-2): 461-468 (1995).
147. Plou F. J., Barandiarán M., Calvo M. V., Ballesteros A. and Pastor E.: High-yield production of mono-and di-oleylglycerol by lipase-catalyzed hydrolysis of triolein. Enzyme and Microbial Technology, 18(1): 66-71 (1996).
148. Rubin, B. and Dennis E. A.: Part A. Biotechnology methods in enzymology. Lipases, 284 (1): 408 (1997).
149. Riaublanc A., Ratomahenina R., Galzy P. and Nicolas M.: Peculiar properties of lipase from candida parapsilosis (ashford) langeron and talice. Journal of the American Oil Chemists’ Society, 70(5): 497-500 (1993).
150. Rowe, H.D.: Biotechnology in the textile/clothing industry: a review. J. Consumer Stud., 23: 53-61 (2001).
151. Roller S. and Jones S. A.: Handbook of Fat Replacers: CRC Press 111 (1996).
152. Rosu R., Yasui M., Iwasaki Y. and Yamane T.: Enzymatic synthesis of symmetrical 1, 3-diacylglycerols by direct esterification of glycerol in solvent-free system. Journal of the American Oil Chemists' Society, 76(7): 839 (1999).
153. Sánchez D. A., Tonetto G. M. and Ferreira M. L.: Separation of acylglycerides obtained by enzymatic esterification using solvent extraction. Journal of the American Oil Chemists' Society, 91(2): 261-270 (2014).
154. Sanz T., Laguna L. and Salvador A.: Biscuit dough structural changes during heating: influence of shortening and cellulose ether emulsions. LWT-Food Science and Technology, 62(2): 962-969 (2015).
155. Saoudi S., Chammema N., Sifaoui I., Bouassida-Beji M., Jiménez I. A., , Isabel L.B., Sandra D. S., Moktar H. and Maria R. B.: Influence of tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions. Food Chemistry, 212 (1): 503-511 (2016).
156. Schnepf M., Gwen S. and Jon C.: Chemical and sensory characteristics of stored menhaden oil/ soybean oil blends. J. Am. Oil Chem. Soc., 68: 281-284 (1991).
157. Shahidi, F. and Wanasundara U. N.:. Methods for measuring oxidative rancidity in fats and oils. Food Lipids: Chemistry, Nutrition, and Biotechnology, 465-482 (2002).
158. Shimotoyodome A., Osaki N., Onizawa K., Mizuno T., Suzukamo C., Okahara F., Fukuoka D. and Hase T.: Dietary 1-monoolein decreases postprandial GIP release by reducing jejunal transport of glucose and fatty acid in rodents. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303(3): 298-310 (2012).
159. Seitz E. W.: Industrial application of microbial lipases: a review. Journal of the American Oil Chemists’ Society,51 (2): 12–16 (1974).
160. Snehal B., Jyotsna T., Parag R. and Gogate: Ultrasound pretreatment as a novel approach for intensification of lipase catalyzed esterification of tricaprylin. Ultrasonics Sonochemistry, 36:253-261 (2016).
161. Soni M., Kimura H. and Burdock G.: Chronic study of diacylglycerol oil in rats. Food and Chemical Toxicology, 39(4): 317-329 (2001).
162. St‐Onge M. P., Ross R., Parsons W. D. and Jones P. J.: Medium‐chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obesity, 11(3): 395-402 (2003).
163. Stamatis H., Xenakis A., Provelegiou M. and Kolisis F. N.: Esterification reactions catalyzed by lipases in microemulsions: the role of enzyme localization in relation to its selectivity. Biotechnology and Bioengineering, 42(1): 103-110 (1993).
164. Stubbs R. J. and Harbron C. G.: Covert manipulation of the ratio of medium-to long-chain triglycerides in isoenergetically dense diets: effect on food intake in adlibitum feeding men. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 20(5): 435-444 (1996).
165. Sugimoto T., Fukuda H., Kimura T. and Iritani N.: Dietary diacylglycerol-rich oil stimulation of glucose intolerance in genetically obese rats. Journal of Nutritional Science and Vitaminology, 49(2): 139-144 (2003).
166. Sliepcevich A., Moscatelli D. and Gelosa S.: Kinetic study of the polycondensation of acetone to produce isophorone adopting alumina and magnesia as catalysts. Dept. di Chimica, Materiali e Ingegneria Chimica (2007).
167. Sugimoto T., Kimura T., Fukuda H. and Iritani N.: Comparisons of glucose and lipid metabolism in rats fed diacylglycerol and triacylglycerol oils. Journal of Nutritional Science and Vitaminology, 49(1): 47-55 (2003).
168. Sugiura M., Shimizu M., Yamada N. and Yamada Y.: Process for producing diglycerides. Patents: WO9909119 (1999).
169. Takano H. and Itabashi Y.: Molecular species analysis of 1, 3-diacylglycerols in edible oils by HPLC/ESI-MS. Bunseki Kagaku, 51(6): 437-442 (2002).
170. Takamoto T., Shirasaka H., Uyama H. and Kobayashi S.: Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. C. S. J Journals, 30 (6) (2001).
171. Teissier R. and Kervennal J.: Process for obtaining isophorone. Patents: US5849957A (1998).
172. Thakur S.: Lipases, its sources, properties and applications: a review. J. Sci., 3: 1-29 (2012).
173. Treichel H., Oliveira D. De., Mazutti M. A., Luccio M. D. and Oliveira J. V.: A review on microbial lipases production. Food Bioprocess Technol., 3: 182-196 (2010).
174. Traul K., Driedger A., Ingle D. and Nakhasi D.: Review of the toxicologic properties of medium-chain triglycerides. Food and Chemical Toxicology, 38(1): 79-98 (2000).
175. USDHHS. 1988. “The surgeon general’s report on nutrition and health. Publ. No. 88-50210. U.S. Govt.Print. Office, Washington, D.C.
176. Villeneuve P. and Foglia T.: Lipase specificities: potential application in lipid bioconversions. International News on Fats, Oils and Related Materials, 8(6): 640-650 (1997).
177. Waldinger C. and Schneider M.: Enzymatic esterification of glycerol III. lipase-catalyzed synthesis of regioisomerically pure 1, 3-sn-diacylglycerols and 1 (3)-rac-monoacylglycerols derived from unsaturated fatty acids. Journal of the American Oil Chemists’ Society, 73(11): 1513-1519 (1996).
178. Wang D. and Mitchell E. S.: Cognition and synaptic-plasticity related changes in aged rats supplemented with 8-and 10-carbon medium chain triglycerides. PloS one, 11(8): 159-160 (2016).
179. Watanabe H., Onizawa K., Taguchi H., Kobori M., Chiba H., Naito S., Matsuo N., YasKuawa T., Hattori M. and Shimasaki H.: Nutritional characterization of diacylglycerols in rats. Journal of Japan Oil Chemists' Society, 46(3): 301-307 (1997).
180. Warshaw H.; Franz M. P., Margaret A. and Wheeler M.: Fat replacers: Their use in foods and role in diabetes medical nutrition therapy. Diabetes Care. 19 (11): 1294-1301 (1996).
181. Watanabe Y., Yamauchi-Sato Y., Nagao T., Negishi S., Terai T., Kobayashi T. and Shimada Y.: Production of MAG of CLA by esterification with dehydration at ordinary temperature using penicillium camembertii lipase. Journal of the American Oil, 82 (9): 619–623 (2005).
182. Weber N. and Mukherjee K. D.: Solvent-free lipase-catalyzed preparation of diacylglycerols. Journal of Agricultural and Food Chemistry, 52(17): 5347-5353 (2004).
183. White M. D., Papamandjaris A. A. and Jones P. J.: Enhanced postprandial energy expenditure with medium-chain fatty acid feeding is attenuated after 14 D in premenopausal women. The American Journal of Clinical Nutrition, 69(5): 883-889 (1999).
184. Wang C. S., Kuksis A. and Manganaro F.: Studies on the substrate specificity of purified human milk lipoprotein lipase. Lipids, 17 (4): 278–284 (1982).
185. Wollin S. D., Wang Y., Kubow S. and Jones P. J.: Effects of a medium chain triglyceride oil mixture and α-lipoic acid diet on body composition, antioxidant status, and plasma lipid levels in the golden syrian hamster. The Journal of Nutritional Biochemistry, 15(7): 402-410 (2004).
186. Wylie-Rosett J.: Fat Substitutes and Health: An advisory from the nutrition committee of the american heart association. Circulation, 105(23): 2800-2804 (2002).
187. Xu X., Mu H., A. R. Skands H., Høy C. E. and Adler-Nissen J.: Parameters affecting diacylglycerol formation during the production of specific-structured lipids by lipase-catalyzed interesterification. Journal of the American Oil Chemists' Society, 76: 175-181 (1999).
188. Yamaguchi S. and Mase T.: Purification and characterization of mono-and diacylglycerol lipase isolated from penicillium camembertii U-150. Applied Microbiology and Biotechnology, 34(6): 720-725 (1991).
189. Yamane T., Kang S. T., Kawahara K. and Koizumi Y.: High-yield diacylglycerol formation by solid-phase enzymatic glycerolysis of hydrogenated beef tallow. Journal of the American Oil Chemists’ Society, 71: 339-342 (1994).
190. Yang Y C., Vali S. R. and Ju Y. H.: A process for synthesizing high purity monoglyceride. Journal of the Chinese Institute of Chemical Engineers, 34(6): 617-623 (2003).
191. Yasukawa T. and Yasunaga K..: Nutritional functions of dietary diacylglycerols. Journal of Oleo Science, 50(5): 427-432 (2001).
192. Yasukawa T.: Study of monostearin films in the presence of electrolyte. Patent: 2010558 (1996).
193. Zhao Y., Liu J., Deng L., Wang F. and Tan T.: Optimization of candida sp. 99-125 lipase catalyzed esterification for synthesis of monoglyceride and diglyceride in solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 72(3-4): 157-162 (2011).
194. Zhong N., Li L., Xu X., Cheong L. Z., Zhao X. and Li B.: Production of diacylglycerols through low-temperature chemical glycerolysis. Food Chemistry, 122(1): 228-232 (2010).
195. Zhong N., Gui Z., Xu L., Huang J., Hu K., Gao Y., Zhang X., Xu Z., Su J. and Li B.: Solvent-free enzymatic synthesis of 1, 3-diacylglycerols by direct esterification of glycerol with saturated fatty acids. Lipids in Health and Disease, 12(1): 65 (2013).
196. Zhong N., Li L., Xu X., Cheong L. Z., Xu Z. and Li B.: High yield of monoacylglycerols production through low‐temperature chemical and enzymatic glycerolysis. European Journal of Lipid Science and Technology, 115(6): 684-690 (2013).
197. Zhong N., Li L., Xu X., Cheong L. z., Li B., Hu S. and Zhao X.: An efficient binary solvent mixture for monoacylglycerol synthesis by enzymatic glycerolysis. Journal of the American Oil. 86 (8):783–789 (2009).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top