跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昌晉
研究生(外文):Chang Chin Lin
論文名稱:探討大豆水解蛋白與海藻酸鈉對於植物生長和環境逆境的影響
論文名稱(外文):Stimulatory effect of soybean protein hydrolysates and alginate on plant growth and abiotic stress
指導教授:莊惠文莊惠文引用關係
指導教授(外文):Huey- Wen Chuang
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生物農業科技學系研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:40
中文關鍵詞:大豆水解蛋白海藻酸鈉非生物逆境
外文關鍵詞:soybean protein hydrolysatealginateabiotic stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大豆蛋白水解物(Soybean protein hydrolysate, SPH)和海藻酸鈉(alginic acid, AlA)同屬於生物活性物(biostimulants),研究結果顯示,這兩種生物活性物有促進植物生長和增強逆境下的耐受性。海藻酸鈉是從褐藻中分離的多醣體。前人研究指出,海藻酸鈉可以促進植物生長、提高作物產量,並做為防禦反應的激發子來對抗病原體感染,因此被作為新型的農業植物生長調解劑用於改善作物的品質。大豆蛋白水解物則利用Bacillus sp.分泌之蛋白酶生產的大豆蛋白水解物進行本次研究。本次研究利用微生物發酵製備SPH與AlA共同處理於目標植物,從結果顯示在阿拉伯芥低溫和缺水逆境處理下,SPH與AlA共同處理於滲透壓逆境時與單獨處理相較於對照組有增加下胚軸長度和側根數。SPH與AlA共同處理與單獨處理都有增加地下部根長與側根數相較於對照組於低溫逆境時。在番茄生長上,共同處理SPH與AlA與單獨處理下都有增加單一花絮上的開花數和降低電子測漏率 (Electrolyte leakage)相較於對照組,同時增加抗氧化酵素活性愈創木分過氧化物酶(GPX),也會誘導CAT、AOX、LhcbI及PR3蛋白表現。在青江菜生長下共同處SPH與AlA可以抑制過氧化氫生成和MDA含量。由以上結果可知AlA結合SPH可以促進植物生長和抗氧化能力。
Protein hydrolysate (SPH) and alginic acid (AlA) are biostimulants that can promote plant growth, enhance plant tolerance to stressful environment. AIA is a polysaccharide isolated from brown algae. Previous studies showed that AIA could promot plant growth, increase crop yield, and act as an elicitor to trigger defense response against pathogen infection. In this study, a SPH prepared by microbial fermentation and AlA were used to treat target plants. Our results showed that Arabidopsis treated with SPH and AlA increased root length and lateral numbers under osmotic stress. Treatment of SPH and AIA can increase root length, lateral numbers and decreased electrolyte leakage under cold stress. Treatment with SPH and AlA also promoted Arabidopsis growth. Tomato plant treated with SPH and AlA exhibited increased number of flowers in a single inflorescence, and increased GPX antioxidant enzyme activity and increased protein accumulation included CAT, AOX , LhcbI and PR3. Brassica (Brassica rapa chinensis, variety Brassica) treated with SPH and AlA exhibited lower H2O2 accumulation and malonaldehyde (MDA) content. In summary, our results showed that SPH combined with AlA can promote plant growth and antioxidant enzyme activity.
目錄…………………………………………………………………………………………………………………………1
中文摘要-------------------------------------------------------------------------------------------------3
英文摘要-------------------------------------------------------------------------------------------------4
壹、 前言-------------------------------------------------------------------------------------------------5
貳、 材料與實驗方法--------------------------------------------------------------------------------13
1. 實驗材料-----------------------------------------------------------------------------------13
2. 實驗方法-----------------------------------------------------------------------------------13
一、 阿拉伯芥的培養及處理---------------------------------------------------------13
1. 清洗阿拉伯芥種子---------------------------------------------------------13
2. 植物生長試驗----------------------------------------------------------------13
3. 滲透壓逆境-------------------------------------------------------------------13
4. 低溫逆境處理----------------------------------------------------------------13
二、 大豆胜肽和海藻酸鈉處理番茄-----------------------------------------------14
三、 大豆胜肽和海藻酸鈉處理燕菜類作物-青江菜---------------------------14
四、 蛋白質相關技術-------------------------------------------------------------------14
1. 番茄蛋白質萃取------------------------------------------------------------14
2. Western blot 分析----------------------------------------------------------15
五、 生理分析相關技術----------------------------------------------------------------16
1. 過氧化氫含量之測定------------------------------------------------------16
2. Malonaldehyde (MDA)含量之測定-------------------------------------16
3. 抗氧化酵素活性------------------------------------------------------------16
4. 檢測電解質測漏率 (electrolyte leakage)----------------------------18
5. 統計分析----------------------------------------------------------------------18
參、 實驗結果------------------------------------------------------------------------------------------19
生物活性物對阿拉伯芥植株生長及抗氧化活性的影響---------------------------19
生物活性物對於葉菜類作物生長的影響-----------------------------------------------19
生物活性物降低青江菜氧化逆境---------------------------------------------------------19
生物活性物對於番茄生長與抗氧化活性的影響-------------------------------------20
生物活性物誘導番茄植株中蛋白的表現-----------------------------------------------20
生物活性物對阿拉伯芥低溫逆境的耐受性--------------------------------------------21
生物活性物對阿拉伯芥滲透壓逆境的耐受性-----------------------------------------21
肆、 討論------------------------------------------------------------------------------------------------22
伍、 參考文獻------------------------------------------------------------------------------------------33
圖次
圖1、大豆胜肽與alginate影響阿拉伯芥植株生長及抗氧化活性------------24
圖2、大豆胜肽與 alginate 對葉菜類植物生長的影響---------------------------25
圖3、大豆胜肽與alginate 對青江菜氧化逆境的影響----------------------------26
圖4、大豆胜肽與alginate對番茄開花時期的影響--------------------------------27
圖5、大豆胜肽與alginate 對番茄產量的影響--------------------------------------28
圖6、大豆胜肽與alginate 對番茄抗氧化活性的影響----------------------------29
圖7、大豆胜肽與 alginate誘導番茄蛋白的表現-----------------------------------30
圖8、大豆胜肽與 alginate 增加阿拉伯芥對低溫逆境的耐受性--------------31
圖9、大豆胜肽與 alginate 增加阿拉伯芥對滲透壓逆境的耐受性-----------32
1. Aebi, H. (1984). [13] Catalase in vitro. Methods in enzymology, Elsevier. 105: 121-126.
2. Agyei, D. (2015). "Bioactive proteins and peptides from soybeans." Recent patents on food, nutrition & agriculture 7(2): 100-107.
3. Akimoto, C., et al. (2000). "Synergistic effect of active oxygen species and alginate on chitinase production by Wasabia japonica cells and its application." Journal of bioscience and bioengineering 89(2): 131-137.
4. Anderson, M. D., et al. (1994). "Differential Gene Expression in Chilling-Acclimated Maize Seedlings and Evidence for the Involvement of Abscisic Acid in Chilling Tolerance." Plant Physiology 105(1): 331-339.
5. Andrea, E., et al. (2009). "Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings." Journal of Plant Nutrition and Soil Science 172(2): 237-244.
6. Apel, K. and H. Hirt (2004). "REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signaling Transduction." Annual Review of Plant Biology 55: 373-399.
7. Asada, K. (1992). "Ascorbate peroxidase–a hydrogen peroxide‐scavenging enzyme in plants." Physiologia Plantarum 85(2): 235-241.
8. Ashraf, M. and M. Hafeez (2004). "Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations." Biologia Plantarum 48(1): 81-86.
9. Bartels, D. and R. Sunkar (2005). "Drought and Salt Tolerance in Plants." Critical Reviews in Plant Sciences 24(1): 23-58.
10. Baxter, A., et al. (2014). "ROS as key players in plant stress signalling." Journal of Experimental Botany 65(5): 1229-1240.
11. Bhattacharya, S. (2015). Reactive Oxygen Species and Cellular Defense System. Free Radicals in Human Health and Disease. V. Rani and U. C. S. Yadav. New Delhi, Springer India: 17-29.
12. Bienert, G. P. and F. Chaumont (2014). "Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide." Biochimica et Biophysica Acta (BBA) - General Subjects 1840(5): 1596-1604.
13. Borsani, O., et al. (2001). "Evidence for a Role of Salicylic Acid in the Oxidative Damage Generated by NaCl and Osmotic Stress in Arabidopsis Seedlings." Plant Physiology 126(3): 1024-1030.
14. C., B. P. and J. R. L. (2001). "Cell death of barley aleurone protoplasts is mediated by reactive oxygen species." The Plant Journal 25(1): 19-29.
15. Cai, Z., et al. (2012). "Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera." Plant Cell, Tissue and Organ Culture (PCTOC) 108(3): 401-409.
16. Calvo, P., et al. (2014). "Agricultural uses of plant biostimulants." Plant and Soil 383(1): 3-41.P
17. Campos, P. S., et al. (2003). "Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants." Journal of plant physiology 160(3): 283-292.
18. Cerdán, M., et al. (2008). Effect of foliar and root applications of amino acids on iron uptake by tomato plants. IV Balkan Symposium on Vegetables and Potatoes 830.
19. Chen, T. H. and N. Murata (2002). "Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes." Current Opinion in Plant Biology 5(3): 250-257.
20. Chen, T. H. and N. Murata (2008). "Glycinebetaine: an effective protectant against abiotic stress in plants." Trends in plant science 13(9): 499-505.
21. Chinnusamy, V., et al. (2007). "Cold stress regulation of gene expression in plants." Trends in plant science 12(10): 444-451.
22. Choudhury, F. K., et al. (2017). "Reactive oxygen species, abiotic stress and stress combination." The Plant Journal 90(5): 856-867.
23. Colla, G., et al. (2014). "Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis." Frontiers in Plant Science 5(448).
24. Costa, V. and P. Moradas-Ferreira (2001). "Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases." Molecular Aspects of Medicine 22(4): 217-246.
25. DeLong, J. M., et al. (2002). "Using a modified ferrous oxidation− xylenol orange (FOX) assay for detection of lipid hydroperoxides in plant tissue." Journal of agricultural and food chemistry 50(2): 248-254.
26. Denness, L., et al. (2011). "Cell Wall Damage-Induced Lignin Biosynthesis Is Regulated by a Reactive Oxygen Species- and Jasmonic Acid-Dependent Process in Arabidopsis." Plant Physiology 156(3): 1364-1374.
27. Du Jardin, P. (2012). The Science of Plant Biostimulants–A bibliographic analysis, Ad hoc study report, European Commission.
28. EMILIE, B., et al. (2011). "Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley." Plant, Cell & Environment 34(6): 980-993.
29. Endo, M., et al. (2009). "High Temperatures Cause Male Sterility in Rice Plants with Transcriptional Alterations During Pollen Development." Plant and Cell Physiology 50(11): 1911-1922.
30. Eyheraguibel, B., et al. (2008). "Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize." Bioresource Technology 99(10): 4206-4212.
31. Finkelstein, R. (2013). "Abscisic Acid Synthesis and Response." The Arabidopsis Book: e0166.
32. Fujita, Y., et al. (2011). "ABA-mediated transcriptional regulation in response to osmotic stress in plants." Journal of Plant Research 124(4): 509-525.
33. Georgiou, G. (2002). "How to Flip the (Redox) Switch." Cell 111(5): 607-610.
34. Gill, S. S. and N. Tuteja (2010). "Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants." Plant Physiology and Biochemistry 48(12): 909-930.
35. Greer, D. H. and M. M. Weedon (2012). "Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate." Plant, Cell & Environment 35(6): 1050-1064.
36. H., C. T. H. and M. NORIO (2011). "Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications." Plant, Cell & Environment 34(1): 1-20.
37. Hayashi, F., et al. (2001). "The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5." Nature 410(6832): 1099.
38. Hu, X., et al. (2004). "Promotive effects of alginate-derived oligosaccharide on maize seed germination." Journal of Applied Phycology 16(1): 73-76.
39. Jagadish, S. V. K., et al. (2010). "Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)." Journal of Experimental Botany 61(1): 143-156.
40. Jia, G.-X., et al. (2002). "Transformation of tomato with the BADH gene from Atriplex improves salt tolerance." Plant Cell Reports 21(2): 141-146.
41. Jones, J. D. and J. L. Dangl (2006). "The plant immune system." Nature 444(7117): 323.
42. Justyna, P.-G. and K. Ewa (2013). "Induction of resistance against pathogens by β-aminobutyric acid." Acta Physiologiae Plantarum 35(6): 1735-1748.
43. Keen, N. (1975). "Specific elicitors of plant phytoalexin production: detenninants of race specificity in pathogens?" Science 187(4171): 74-75.
44. Khan, W., et al. (2009). "Seaweed Extracts as Biostimulants of Plant Growth and Development." Journal of Plant Growth Regulation 28(4): 386-399.
45. Klarzynski, O., et al. (2000). "Linear β-1, 3 glucans are elicitors of defense responses in tobacco." Plant Physiology 124(3): 1027-1038.
46. Komatsu, S., et al. (2007). "Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants." Molecular Genetics and Genomics 277(6): 713.
47. Korhonen, H. and A. Pihlanto (2006). "Bioactive peptides: production and functionality." International dairy journal 16(9): 945-960.
48. Kromdijk, J., et al. (2016). "Improving photosynthesis and crop productivity by accelerating recovery from photoprotection." Science 354(6314): 857-861.
49. Kung, C.-P., et al. (2014). "Expression of a dye-decolorizing peroxidase results in hypersensitive response to cadmium stress through reducing the ROS signal in Arabidopsis." Environmental and Experimental Botany 101: 47-55.
50. Kunze, G., et al. (2004). "The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants." The Plant Cell 16(12): 3496-3507.
51. L.P., C., et al. (2008). "Humic acids crossinteractions with root and organic acids." Annals of Applied Biology 153(2): 157-166.
52. Laflamme, N. and S. Rivest (2001). "Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components." The FASEB Journal 15(1): 155-163.
53. Lee, G.-A., et al. (2011). "Archaeological soybean (Glycine max) in East Asia: does size matter?" PloS one 6(11): e26720.
54. Li, J., et al. (2017). Hormone Metabolism and Signaling in Plants, Academic Press.
55. Li, X., et al. (2009). "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science 324(5932): 1312-1314.
56. Lárus, Ö. B., et al. (2000). "Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity." The Plant Journal 23(6): 785-794.
57. Lobo, V., et al. (2010). "Free radicals, antioxidants and functional foods: Impact on human health." Pharmacognosy reviews 4(8): 118.
58. Møller, I. M. (2001). "PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species." Annual Review of Plant Physiology and Plant Molecular Biology 52(1): 561-591.
59. Malaguti, M., et al. (2014). "Bioactive peptides in cereals and legumes: agronomical, biochemical and clinical aspects." International journal of molecular sciences 15(11): 21120-21135.

60. Mandal, S., et al. (2013). "Elicitor-induced defense responses in Solanum lycopersicum against Ralstonia solanacearum." The Scientific World Journal 2013.
61. Marie-Noëlle, V., et al. (2006). "Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells." FEBS Letters 580(17): 4218-4223.
62. Matsui, T., et al. (2005). "Correlation between Viability of Pollination and Length of Basal Dehiscence of the Theca in Rice undera Hot-and-Humid Condition." Plant Production Science 8(2): 109-114.
63. Matsui, T., et al. (2009). Heat-induced floret sterility in rice: mechanisms of occurrence and tolerance. Gamma Field Symp.
64. Matsui, T., et al. (2000). "High Temperature at Flowering Inhibits Swelling of Pollen Grains, a Driving Force for Thecae Dehiscence in Rice (Oryza sativa L.)." Plant Production Science 3(4): 430-434.
65. McGurl, B., et al. (1992). "Structure, expression, and antisense inhibition of the systemin precursor gene." Science 255(5051): 1570-1573.
66. Meister, A. (1994). "Glutathione-ascorbic acid antioxidant system in animals." Journal of Biological Chemistry-Paper Edition 269(13): 9397-9400.
67. Mercier, L., et al. (2001). "The algal polysaccharide carrageenans can act as an elicitor of plant defence." New Phytologist 149(1): 43-51.
68. Mithöfer, A., et al. (1999). "Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β-glucan or chitin elicitors." planta 207(4): 566-574.
69. Mäkelä, P., et al. (1996). "Uptake and translocation of foliar-applied glycinebetaine in crop plants." Plant science 121(2): 221-230.
70. Munemasa, S., et al. (2013). "Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione." Frontiers in Plant Science 4: 472.
71. Munné-Bosch, S., et al. (2012). "The impact of global change factors on redox signaling underpinning stress tolerance." Plant Physiology.
72. Nath, M., et al. (2016). "Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition." Frontiers in Plant Science 7: 1574.
73. Natsume, M., et al. (1994). "Isolation and characterization of alginate-derived oligosaccharides with root growth-promoting activities." Carbohydrate Research 258: 187-197.
74. Neill, S. J., et al. (2002). "Hydrogen peroxide and nitric oxide as signalling molecules in plants." Journal of Experimental Botany 53(372): 1237-1247.
75. O'DONNELL, R. W. (1973). "THE AUXIN-LIKE EFFECTS OF HUMIC PREPARATIONS FROM LEONARDITE." Soil Science 116(2): 106-112.
76. Orozco-Cárdenas, M. L., et al. (2001). "Hydrogen Peroxide Acts as a Second Messenger for the Induction of Defense Genes in Tomato Plants in Response to Wounding, Systemin, and Methyl Jasmonate." The Plant Cell 13(1): 179-191.
77. Parcy, F., et al. (1994). "Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid." The Plant Cell 6(11): 1567-1582.
78. Park, E. J., et al. (2004). "Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage." The Plant Journal 40(4): 474-487.
79. Patier, P., et al. (1995). "Free or silica-bound oligokappa-carrageenans elicit laminarinase activity in Rubus cells and protoplasts." Plant science 110(1): 27-35.
80. Pearce, G., et al. (1991). "A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins." Science 253(5022): 895-897.
81. Pei, Z.-M., et al. (2000). "Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells." Nature 406: 731.
82. Piccolo, A. and M. Spiteller (2003). "Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions." Analytical and Bioanalytical Chemistry 377(6): 1047-1059.
83. Qin, F., et al. (2011). "Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance." Plant and Cell Physiology 52(9): 1569-1582.
84. Quan, R., et al. (2004). "Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize." Plant Biotechnology Journal 2(6): 477-486.
85. Sakamoto, A. and N. Murata (2000). "Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance." Journal of Experimental Botany 51(342): 81-88.
86. SakamotoA, M. (2002). "Theroleofglycinebetaineintheprotectionofplantsfromstress: cluesfromtransgenicplants." PlantCellandEnvironment 25: 163.
87. Scheler, C., et al. (2013). "Nitric oxide and reactive oxygen species in plant biotic interactions." Current Opinion in Plant Biology 16(4): 534-539.
88. Schieber, M. and N. S. Chandel (2014). "ROS function in redox signaling and oxidative stress." Current biology 24(10): R453-R462.
89. Steiner, H.-Y., et al. (1994). "An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins." The Plant Cell 6(9): 1289-1299.
90. Su, J., et al. (2006). "Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine." Journal of Experimental Botany 57(5): 1129-1135.
91. Tör, M., et al. (2009). "Receptor-mediated signalling in plants: molecular patterns and programmes." Journal of Experimental Botany 60(13): 3645-3654.
92. Talbi, S., et al. (2015). "Drought tolerance in a Saharian plant Oudneya africana: Role of antioxidant defences." Environmental and Experimental Botany 111: 114-126.
93. Thakur, M. and B. S. Sohal (2013). "Role of elicitors in inducing resistance in plants against pathogen infection: a review." ISRN biochemistry 2013.
94. Veena, S., et al. (2001). "Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx." The Plant Journal 27(1): 1-12.
95. Vergnolle, C., et al. (2005). "The Cold-Induced Early Activation of Phospholipase C and D Pathways Determines the Response of Two Distinct Clusters of Genes in Arabidopsis Cell Suspensions." Plant Physiology 139(3): 1217-1233.
96. Viswanathan, C., et al. (2006). "Gene regulation during cold acclimation in plants." Physiologia Plantarum 126(1): 52-61.
97. ang, W., et al. (2003). "Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance." planta 218(1): 1-14.
98. Weber, H., et al. (2004). "Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde." The Plant Journal 37(6): 877-888.
99. Williams, M. E., et al. (2005). "Mutations in the Arabidopsis Phosphoinositide Phosphatase Gene SAC9 Lead to Overaccumulation of PtdIns(4,5)P2 and Constitutive Expression of the Stress-Response Pathway." Plant Physiology 138(2): 686-700.
100. Winterbourn, C. C. (2013). Chapter One - The Biological Chemistry of Hydrogen Peroxide. Methods in Enzymology. E. Cadenas and L. Packer, Academic Press. 528: 3-25.
101. Xu, A., et al. (2015). "Oligochitosan and sodium alginate enhance stilbene production and induce defense responses in Vitis vinifera cell suspension cultures." Acta Physiologiae Plantarum 37(8): 144.
102. Xu, X., et al. (2003). "Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants." Bioscience, biotechnology, and biochemistry 67(9): 2022-2025.
103. Yamaguchi-Shinozaki, K. and K. Shinozaki (2006). "TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES." Annual Review of Plant Biology 57(1): 781-803.
104. Yang, X., et al. (2005). "Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants." Plant Physiology 138(4): 2299-2309.
105. Yonemoto, Y., et al. (1993). "Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase." Journal of fermentation and bioengineering 75(1): 68-70.
106. Zhang, J. and M. Kirkham (1994). "Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species." Plant and Cell Physiology 35(5): 785-791.
107. Zhao, J., et al. (2000). "Improvement of indole alkaloid production in Catharanthus roseus cell cultures by osmotic shock." Biotechnology letters 22(15): 1227-1231.
108. Zhu, J.-K. (2002). "SALT AND DROUGHT STRESS SIGNAL TRANSDUCTION IN PLANTS." Annual Review of Plant Biology 53(1): 247-273.
Annual Review of Plant Biology 53(1): 247-273.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top