跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李翰宇
研究生(外文):Han-Yu Lee
論文名稱:不同管理方式、採收期與儲藏條件對甘藷產量性狀和塊根品質之影響
論文名稱(外文):Effects of Different Managements, Harvesting Periods and Storage Conditions on Yield Traits and Root Quality of Sweet Potato
指導教授:侯金日侯金日引用關係
指導教授(外文):Hou, Chin-Jin
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農藝學系研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:164
中文關鍵詞:甘藷收穫期綜合性病蟲害管理物理防治管理儲藏溫度成分
外文關鍵詞:Sweet potatoHarvest dateIntegrated pest managementPhysical control managementStorageTemperatureComposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以甘藷台農57號、台農66號、台農72號三品種為材料,於2016年春作(2月)及2016年秋作(9月)於嘉義縣義竹鄉農家農田種植,以綜合性病蟲害管理、物理防治管理為處理,於插植後120天、150天、180天收穫並調查農藝性狀及產量,採收甘藷塊根進行不同溫度(25℃、20℃、15℃)與儲藏月份(1個月、2個月、3個月、4個月、5個月、6個月)處理,儲藏期間調查塊根品質(萌芽率、乾物率、甘藷蟻象危害率、軟腐率、失水率),並分析最適收穫期塊根之一般成分(水分、灰分、粗脂肪、粗蛋白與澱粉)含量。結果顯示:
2016年兩期作兩管理方式之台農57號甘藷蟻象危害率隨收穫期延長至180天而增加,台農66號、台農72號亦有相似趨勢,台農66號、台農72號較台農57號有較低甘藷蟻象危害率;兩期作兩管理方式之台農57號小區面積塊根產量隨收穫期延長至150到 180天而增加,台農66號、台農72號亦有相似趨勢;春作台農66號、台農72號較台農57號有較高產量,秋作台農57號較台農66號、台農72號有較高產量;春作三品種最適收穫期為150~180天,秋作三品種最適收穫期為150天;兩期作相同收穫期之三品種綜合管理區較物理防治區有較低甘藷蟻象危害率;秋作三品種在兩管理方式皆較春作有較低甘藷蟻象危害率,兩期作相同收穫期之三品種綜合管理區較物理防治區有較高小區面積塊根產量;兩期作兩管理方式三品種於蔓長、地上部鮮重、塊根直徑、塊根長度、單粒塊根重、單株塊根重、甘藷蟻象危害率多顯著高於秋作,小區面積塊根產量除秋作120天收穫期台農57號及台農66號、秋作180天收穫期台農72號在春作較秋作有較高小區面積塊根產量外,秋作三品種在兩管理方式皆較春作有較多塊根數及較高小區面積塊根產量。
儲藏後,萌芽率變化受儲藏溫度、儲藏時間、品種所影響;乾物率變化受儲藏溫度、失水率、收穫天數、期作、品種所影響;甘藷蟻象危害率變化受儲藏溫度、收穫天數、期作、田間不同管理方式、品種抗病性所影響;軟腐率變化受儲藏溫度、收穫天數、品種抗病性所影響;失水率變化受儲藏溫度、儲藏時間、品種所影響;兩期作於相同收穫期、不同管理方式下,隨儲藏月份增加,三品種塊根皆於20℃、15℃儲藏有較低萌芽率、乾物率、甘藷蟻象危害率、失水率;20℃、15℃儲藏能延遲萌芽時間、減少蟻象危害及塊根失水。春作於相同儲藏溫度儲藏6個月後,台農57號的IPM、PCM萌芽率由120天至180天收穫些微上升,台農66號、台農72號萌芽率由120天至180天收穫期些微下降,秋作於相同儲藏溫度儲藏6個月後,三品種IPM、PCM萌芽率由120天至180天收穫期無明顯差異;春作於相同儲藏溫度儲藏6個月後,台農57號於20℃、15℃的IPM、PCM乾物率由120天至180天收穫期些微上升,台農66號、台農72號乾物率由120天至180天收穫期些微下降,台農72號乾物率由120天至180天收穫期些微上升;秋作三品種於相同儲藏溫度儲藏6個月後,IPM、PCM乾物率由120天至180天收穫期皆明顯上升;春作隨收穫期增加至180天,台農72號較台農57號、台農66號有較高乾物率。秋作隨收穫期增加至180天,台農57號較台農66號、台農72號有較高乾物率;春作於相同儲藏溫度儲藏6個月後,台農57號、台農66號、台農72號於20℃、15℃的IPM、PCM甘藷蟻象危害率由120天至180天收穫期無顯著差異;秋作三品種於相同儲藏溫度儲藏6個月後,IPM、PCM甘藷蟻象危害率由120天至180天收穫期於25℃皆些微上升,20℃、15℃無顯著差異;春作三品種於相同儲藏溫度儲藏6個月後,較秋作有較高甘藷蟻象危害率。春作隨收穫期增加至180天,台農66號、台農72號較台農57號有較高甘藷蟻象危害率。秋作隨收穫期增加至180天,台農57號較台農66號、台農72號有較高甘藷蟻象危害率。春作隨收穫期增加至180天,三品種軟腐率無顯著差異。秋作隨收穫期增加至180天,台農66號較台農57號、台農72號有較高軟腐率,春秋作於相同儲藏溫度儲藏6個月後,三品種於20℃、15℃的IPM、PCM失水率由120天至180天收穫期些微上升。春秋作隨收穫期增加至180天,台農66號較台農57號、台農72號有較高失水率。
2016年春作及秋作皆在兩個管理區中甘藷塊根於25℃儲藏4個月後即因腐敗而呈現缺值,5個月與6個月即無相關資料。春作兩管理區三品種在25℃儲藏4個月;20℃、15℃儲藏6個月後,在25℃皆有較高灰分含量、粗蛋白含量,在20℃、15℃處理皆有較高水分含量、粗脂肪含量、澱粉含量;隨儲藏時間增加,水分、灰分、粗脂肪、粗蛋白含量隨儲藏時間增加而逐漸增加,澱粉含量隨儲藏時間增加而逐漸減少;兩處理綜合性病蟲害管理區與物理防治區在儲藏溫度與月份間對三品種塊根一般成分含量無顯著差異。在儲藏溫度與月份間,台農57號在IPM較PCM有較低灰分、粗脂肪含量,有較高粗蛋白、澱粉含量;台農66號在IPM較PCM有較低灰分、粗脂肪、粗蛋白含量,有較高澱粉含量;台農72號在IPM較PCM有較低粗蛋白含量,有較高灰分、粗脂肪含量、澱粉含量。
秋作兩管理區三品種在25℃儲藏4個月;20℃、15℃儲藏6個月後,在25℃皆有較高粗蛋白含量,在20℃、15℃處理皆有較高水分、灰分、粗脂肪及較高澱粉含量;隨儲藏時間增加,水分、灰分、粗蛋白含量隨儲藏時間增加而逐漸增加,粗脂肪、澱粉含量隨儲藏時間增加而逐漸減少;兩管理區在儲藏溫度與月份間對塊根水分、粗脂肪、粗蛋白、澱粉含量皆無顯著差異,灰分含量於綜合性病蟲害管理區隨儲藏時間增加而逐漸減少,於物理防治區隨儲藏時間增加而逐漸增加。在儲藏溫度與月份間,台農57號在IPM較PCM有較低灰分、粗蛋白、澱粉含量,有較高粗脂肪含量;台農66號在IPM較PCM有較低灰分、粗脂肪、澱粉含量,有較高粗蛋白含量;台農72號在IPM較PCM有較低灰分、粗脂肪、粗蛋白含量,有較高澱粉含量。
In this study, three varieties of sweet potato, TNG 57, TNG 66, and TNG 72, were used as materials for spring planting from Feb. 2016 to Sep. 2016 in the farm of Yizhu township, Chiayi County. Two treatment, integrated pest management(IPM) and physical control management(PCM) were used, and it was harvested at 120 days, 150 days and 180 days after planting. The sweet potato roots were treatmented with different temperatures (25°C, 20°C, 15°C) and months of storage (1 month, 2 months, 3 months, 4 months, 5 months, 6 months), during the storage period, the root quality (germination rate, dry matter rate, sweet potato ant image hazard rate, soft rot rate, water loss rate) were investigated, and the contents of the general compositions (moisture, ash, crude fat, crude protein and starch) of the roots at the optimum harvest stage were analyzed. The results show:
In 2016, when the planting days longer, sweet potato weevil damage increased in both of the pest treatment of two growing seasons for three varieties. TNG 66 and TNG 72 has a lower rate of sweet potato weevil damage than TNG 57. In Two-pest management, TNG 57 has increase in the tuberous yield/plot after 150 and 180 days of planting, as well as TNG 66 and TNG 72. TNG 66 and TNG 72 have higher yields than TNG 57 in spring cropping. TNG 57 has higher yield than TNG 66 and TNG 72 in fall cropping. The optimum harvest period for three varieties is 150-180 days in spring, and the optimum harvest period for three varieties in fall is 150 days. In IPM, three variety with the same harvest period has lower rate of sweet potato weevil damage than the PCM. In two pest management methods, there are lower rates of sweet potato weevil damage than in spring, and three varieties of the same management period have higher block area and root yield than the PCM. In fall crop, stem length, fresh leaves weight, tuberous root diameter, tuberous root length was significantly higher than fall crops. For tuberous yield/plot in fall, both TNG 57 and TNG 66 were less than 120 days after planing, , and fall harvesting for 180 days. In the case of the spring crops, the TNG 72 crops in the spring crops have a higher tuberous yield/plot, and the three crops in the fall crops have more roots and higher tuberous yield/plot than the spring crops.
The change of germination rate is affected by storage temperature, storage time and variety; the change of dry matter rate is affected by storage temperature, water loss rate, different harvest days, period crops and varieties; the change of sweet potato weevil damage(Cylas formicarius) rate is affected by storage temperature and different harvest days, cropping, different management methods in the field, variety disease resistance; Soft rot(Rhizopus stolonifer) rate changes affected by storage temperature, different harvest days, variety disease resistance; water loss rate changes affected by storage temperature, storage time, variety. The two phases were used in the same harvest period and different management methods. With the increase of storage month, the three roots were stored at 20 °C and 15 °C with lower germination rate, dry matter rate, weevil damage rate and water loss rate; storage at 20 °C and 15 °C can delay germination time, reduce Sweet potato weevil damage and root loss. After 6 months of storage at the same storage temperature, the germination rate of TNG 57 in IPM and PCM increased slightly from 120 days to 180 days after planting, TNG 66 and TNG 72 was exactly opposite. After 6 months of storage at the same storage temperature, there was no significant difference in the germination rate of IPM and PCM from 120 days to 180 days after planting in the same storage temperature, storage time, period and harvest period. After 6 months of storage at the same storage temperature, dry matter rate of TNG 57 in the IPM and PCM at 20 °C and 15 °C increased slightly from 120 days to 180 days after planting. The dry matter rate of TNG 66 and TNG 72 decreased slightly from 120 days to 180 days after planting. The dry matter rate of TNG 72 increased slightly from 120 days to 180 days after planting. The three varieties in fall crops were stored at the same storage temperature for 6 months. The dry matter rate of IPM and PCM increased significantly from 120 days to 180 days after planting. As the planting days goes by, dry matter rate of TNG 72 is higher than TNG 57 and TNG 66 in spring crop, and TNG 57 had a higher dry matter rate than TNG 66 and TNG 72 in fall crop. After storage at 20 °C and 15 °C for 6 months, the numbers of sweet potato ant in IPM and PCM for three varieties were not significantly different from 120 days to 180 days after planting. After three months of storage at the same storage temperature, the damage rate of weevil damage rate in IPM and PCM increased slightly from 120 to 180 days after planting at 25 °C, and there was no significant difference between 20 °C and 15 °C. After three months of storage at the same storage temperature, the spring crop of all varieties had higher rates of weevil damage rate than fall crop. When the planting days increased to 180 in spring crop, TNG 66 and TNG 72 had higher rates of weevil damage rate than TNG 57. And TNG 57 had a higher rate of weevil damage rate than TNG 66 and TNG 72 in fall. When planting days increased to 180, there was no significant difference in the soft rot damage rate of the three varieties in spring crop. In fall crop, TNG 66 has a higher soft rot rate than TNG 57 and TNG 72, as planting days increased. After storage at 20 °C and 15 °C for 6 months, water loss rates of the three varieties in the IPM and PCM increased slightly from 120 days to 180 days after planting. TNG 66 was compared with TNG 57 and TNG 72 in high water loss rate, as planting days increase in both crops.
The results showed that in the spring of 2016, both spring and fall crops were stored at 25°C for 4 months in the two management areas. After being stored for 4 months at 25°C, the roots showed lack of value due to corruption, so there was no relevant data for 5 months and 6 months. Three varieties at two management areas in spring storaged at 25°C for 4 months; after storaged at 20°C and 15°C for 6 months, the roots had higher ash content and crude protein content at 25°C, and had higher moisture content, crude fat content and starch content at 20°C and 15°C. The content of moisture,ash, crude fat, and crude protein increased as storage time increased, but the starch content decreased as storage time increased; There was no significant difference between different storage temperature and months with two-processes (IPM and PCM) in the general composition of the roots with three varieties. Between different storage temperature and months, TNG 57 with IPM had lower ash content and crude fat content than PCM, but it had higher crude protein content and starch content; TNG 66 with IPM had lower ash content, crude fat content and crude protein content than that with PCM, but it had higher starch content; TNG 72 with IPM had lower crude protein content than that with PCM, but it had higher ash content, crude fat content, and starch content.
In fall, the treatments of two management areas with three varieties were stored at 25°C for 4 months; after storaged at 20°C and 15°C for 6 months, the roots had higher moisture content and crude protein content at 25°C and higher ash content, crude fat content and starch content at 20°C and 15°C. The moisture content, ash content and crude protein content increased as storage time increased, but the crude fat content and starch content decreased as storage time increased. There was no significant difference about the two-processes (IPM and PCM) in the general composition of the roots with three varieties between different storage temperature and months in moisture, crude fat, crude protein, and starch content in the tuber roots, but ash content with IPM decreased as storage time increased, and ash content with PCM increased as storage time increased. Between different storage temperatures and months, TNG 57 with IPM had lower ash, crude protein and starch content than PCM, but it had higher crude fat content; TNG 66 with IPM had lower ash, crude fat, and starch content than PCM, but it had higher crude protein content; TNG 72 with IPM had lower ash, crude fat, crude protein content than PCM, but it had higher starch content.
中文摘要 I
Abstract VI
表目錄 X
圖目錄 XV
第一章、前言 1
第二章、前人研究 3
第一節、綜合病蟲害管理方式對甘藷農藝性狀、塊根產量與品質的影響 3
第二節、不同收穫期對甘藷農藝性狀、塊根產量與品質的影響 5
第三節、不同儲藏條件對甘藷塊根品質的影響 6
第四節、不同儲藏條件對甘藷塊根一般成分之影響 9
第三章、材料與方法 13
第四章、結果 22
第一節、不同管理方式、品種及收穫期對甘藷農藝性狀及產量之影響 22
第二節、不同管理方式、品種及收穫期在不同儲藏條件下對甘藷塊根品質之影響 40
第三節、不同管理方式、品種在不同儲藏溫度下對甘藷塊根營養成分之影響 74
第五章、討論 107
第一節、不同管理方式、品種及收穫期對甘藷農藝性狀及產量之影響 107
第二節、不同管理方式、品種及收穫期在不同儲藏條件下對甘藷塊根品質之影響 120
第三節、不同管理方式、品種在不同儲藏溫度下對甘藷塊根營養成分之影響 139
第六章、結論 152
第七章、參考文獻 154
王美苓、周政輝、晏文潔。2017。食品分析實驗。華格那企業出版 pp:122-139。
李良、廖嘉信。1983。甘藷塊根粗澱粉率變異之研究。中華農學會報32:325-335。
利幸貞。2013。不同貯藏溫度條件對鮮藷品質之影響。臺灣農業研究 62(2):174-183。
利幸貞、賴永昌。2017。不同品種(系)、植期與貯藏處理之生甘藷抗性澱粉含量研究。台灣農業研究。66(1):26–33。
林志信。2009。有機栽培對甘藷塊根營養成分之影響。碩士論文。嘉義: 國立嘉義大學農藝系學系研究所。
林志信、李瑞興、溫英源、侯金日。2010。有機栽培對甘藷塊根營養成分之影響。嘉大農林學報 7(1): 76-91。
侯金日、李瑞興、溫英源、黃啟鐘。2008。甘藷有機栽培技術之研究。有機作物栽培技術研討會專刊 pp: 83-126。
洪踵全、張松壽。1959。甘藷擬甘藷蟻象鼻蟲之發生消長與生態觀察。農業研究 8:38-44。
陳德能、梁崇仁。1956。新鮮甘藷貯藏病蟲害之防治。科學農業 4 : 427-
429。
莊雅雯。2005。種植期與肥料對葛鬱金根莖品質的探討。碩士論文。屏東:國立屏東科技大學農園生產系。
黃巧雯、莊明富、曾顯雄、楊宏仁、倪蕙芳。2012。由Phomopsis destruens引起之甘藷基腐病。植物病理學會刊 21(1):47-52。
黃啟鐘、賴永昌。2013。嘉義地區甘藷蟻象的綜合管理。嘉大農林學報10(1):11-21。
黃哲倫、劉啟東、廖文昌、賴永昌。2016。淹水處理對甘藷收穫後塊根儲藏品質之影響。台灣農業研究。65(2):128-135。
曾勝雄、江文章、王思涓、蘇慧美。2003。不同產地及儲藏溫度對薏仁組成分及特殊生理機能性成分之影響。臺中區農業改良場研究彙報。80:25-39。
曾勝雄、張正英、蘇惠美。2004。蕎麥組成及保健成分分析。台中區農業改良場研究彙報 82: 61-69。
楊一郎。1969。甘藷簇葉病之研究(Ⅰ)。農業研究 18:50-60。
葉忠川。1988。雜糧作物病害。台灣主要農作物病蟲害彩色圖鑑。台灣省政府農林廳編印 pp:14-15。
費雯綺、王喻其、陳富翔、林曉民、李貽華。2010。植物保護手冊─糧食作物及其他篇。行政院農業委員會農業藥物毒物試驗所編印 pp:87-88。
刘伟明。2005。甘薯新品種浙薯13及其主要栽培技術。作物雜誌。p.51。
廖嘉信。1994。甘藷病害綜合防治。雜糧作物保護研討會專刊 pp: 207-216。
盧建夫、馮淑慧、侯金日。2016。馬鈴薯不同栽培方式及收穫天數對塊根產量及化學成分之影響。嘉大農林學報13(1):1-20。
蔡晴瀅。2012。甘藷西蒙一號(Ipomoea batatas(L.) Lam.)在不同期作、收穫期及儲藏時間對品質的影響。碩士論文。屏東 : 國立屏東科技大學農園生產研究所。
鄭清煥、賴永昌。1999。蔬菜病蟲害綜合防治專輯-甘藷(過溝菜)。行政院農業委員會、台灣省政府農林廳編印。pp:59-67。
鄭安秀、葉忠川、蔡竹固。1995。台灣農家要覽農作篇(三)。pp:56。
魏山河。2012。不同病蟲害管理方式下不同品種與不同收穫期對落花生有機栽培農藝性狀與化學成分之影響。碩士論文。嘉義 : 國立嘉義大學農藝研究所。
賴永昌。2003。春秋期作甘藷塊根發育之生理及遺傳研究。博士論文。臺中:國立中興大學農藝研究所。
賴永昌、黃啟鐘。2003。收穫期對甘藷生產及品質之影響。嘉義大學學報。75:157-165。
賴永昌、李忠田、陳一心、程永雄、蔡金池。2003。甘藷新品種臺農72號之育成。中華農業研究 52:247-257。
賴永昌、廖嘉信、陳一心。1996。金山地區春夏作甘藷不同植期對甘藷塊根產量之影響。中華農業研究 45:26-34。
顏福成、陳學信、陳漢洋。1982。本省甘藷主要產地病蟲危害情況調查報告。台灣農業18:64~67。
羅淑芳、賴永昌。2012。甘藷健康管理技術暨操作手冊。行政院 農業委員會農業試驗所出版 pp:35。
龔財立、辛仲文、姜金龍、鄭隨和。2007。甘藷新品種桃園三號之育成。行政院農業委員會桃園區農業改良場研究彙報。62:1-14。
Adu-Kwarteng, E., E. O. Sakyi-Dawson, G. S. Ayernor, V. D. Truong, F. F. Shih, and K. Daigle. 2014. Variability of sugars in staple-type sweet potato (Ipomoea batatas) cultivars: the effects of harvest time and storage. Int. J. Food Properties. 17:410-420.
Ahn, J. K., W. W. Collins, and D. M. Pharr.1980. Influence of preharvest temperature and flooding on sweet potato roots in storage. Hort Sci. 15(3):261-263.
Amoah, R. S., S. Landahl, and L. A. Terry. 2016. The timing of exogenous ethylene supplementation differentially affects stored sweetpotato roots. Posthar. Biol. Technol. 120:92–102.
A.O.A.C. 1990. The official methods of analysis of the association of official analytical chemists. 15th ed. The Association of Offical Analytical Chemists Arlington, Virginia, USA.
Arancibia, R. A., C. D. Smith, D. R. LaBonte, J. L. Main, T. P. Smith, and A. Q. Villordon. 2014. Optimizing sweetpotato production for fresh and processing markets through plant spacing and planting-harvest time. Hort. Technol. 24(1):16-24.
Bhagsari, A. S. and D. A. Ashley. 1990. Relationship of photosynthesis and harvest index to sweet potato yield. J. Amer. Soc. Hort. Sci. 115: 288-293.
Carvalho, A. V., and L. C. O. Lima. 2002. Qualidade de kiwis minimamente processadose submetidos a tratamento com ácido ascórbico, ácido cítricoe cloreto de cálcio. Pesquisa Agropecuária Brasileira 37:679-685.
Cheema, M. U. A., D. Rees, R. J. Colgan, M. Taylor, and A. Westby, 2013. The effects of ethylene, 1-MCP and AVG on sprouting in sweetpotato roots. Posthar. Biol. Technol. 85:89–93.
Chou, S. T., B. H. Chiang, Y. C. Chung, P. C. Chen, and C. K. Hsu. 2006. Effects of storage temperatures on the antioxidative activity and composition of yam. Food Chem. 98:618-623.
Church, C. G. and E. M. Chace. 1922. Some changes in the composition of California avocados during growth. U. S. Dept. of Agr. Bul. pp.1073.
Dandago, M. A., and D. T. Gungula. 2011. Effects of various storage methods on the quality and nutritional composition of sweet potato (Ipomea batatas L.) in Yola Nigeria. Int. Food Res. J. 18:271-278.
Donegá, M. A., M. A. Tessmer, E. D Mooz, L. T. C. Dall’Orto, F. F. C. Sasaki, and R. A. Kluge. 2013. Fresh cut yam stored under different temperatures. Hortic. Bras. 31:248-254.
Dwelle, R. B. and G. F. Stallknecht. 1978. Respiration and sugar content of potato tubers as influenced by storage temperature. American Potato J. 55:561-571.
Ebregt, E., P. C. Struik, B. Odongo, and P. E. Abidin. 2007. Piecemeal versus one-time harvesting of sweet potato in north-eastern Uganda with special reference to pest damage. NJAS - Wageningen J. Life Sci. 55:75-92.
Edmunds, B. A., C. A. Clark, A. Q. Villordon, and G. J. Holmes. 2015. Relationships of preharvest weather conditions and soil factors to susceptibility of sweetpotato to postharvest decay caused by Rhizopus stolonifer and Dickeya dadantii. Plant Dis. 99:848-857.
Felix, J., C. C. Shock, J. Ishida, E. B. G. Feibert, and L. D. Saunders. 2015. Irrigation criteria and sweetpotato cultivar performance in the treasure valley of eastern oregon. HortScience. 50(7):1011–1017.
Flitsch, S. L., and R. V. Ulijn. 2003. Sugars tied to the spot. Nature. 421:219-20. DOI: 10.1038/421219a
Gajanayake, B., K. R. Reddy, M. W. Shankle, and R. A. Arancibia. 2013. Early-season soil moisture deficit reduces sweetpotato storage root initiation and development. HortScience. 48(12):1457-1462.
Heltoft, P., A. B. Wold, and E. L. Molteberg. 2016. Effect of ventilation strategy on storage quality indicators of processing potatoes with different maturity levels at harvest. Postharvest Biol. Technol. 117:21-29.
Heltoft, P., A. B. Wold, and E. L. Molteberg. 2017. Maturity indicators for prediction of potato (Solanum tuberosum L.) quality during storage. Postharvest Biol. Technol. 129:97-106.
Huang, C. L., W. C. Liao, C. F. Chan, and Y. C. Lai. 2014. Storage performance of Taiwanese sweet potato cultivars. J. Food Sci Technol. 51(12):4019-4025.
Indira, P. and S. Kabeerathumma. 1988. Physiological response of sweetpotato under water stress. 1. Effect of water stress during the different phases of tuberization. J. Root Crops. 14:37–40.
Jin, Y. L., Y. Fang, G. H. Zhang, L. L. Zhou, and H. Zhao. 2012. Comparison of ethanol production performance in 10 varieties of sweet potato at different growth stages. Acta Oecol. 44:33-37.
Knowles, N. R., E. P. Driskill Jr., and L. O. Knowles. 2009. Sweetening responses of potato tubers of different maturity to conventional and non-conventional storage temperature regimes. Postharvest Biol. Technol.. 52:49-61.
Kokubu, T. 1973. Thremmatological studies on the relationship between the structure of tuberous root and its starch accumulating function in sweetpotato varieties. Bul. Fac.Agr. Kagoshima Univ. 23:1–126.
Lien, C. Y., C. F. Chan, C. L. Huang, Y. C. Lai, and W. C. Liao. 2012. Studies of carotene extraction from sweet potato variety CYY95-26, Ipomoea batatas, L. Int J Food Eng. doi:10.1515/1556-3758.2490.
Magdalena, G. and M. Dariusz. 2018. Losses during storage of potato varieties in relation to weather conditions during the vegetation period and temperatures during long-term storage. American J. Potato Res. 95:130-138.
Mannan, M. A., M. K. R. Bhuiyan, A. Quasem, M. M. Rashid and M. A. Siddique. 1992. Study on the growth and partitioning of dry matter in sweet potato. J. Root Crops 18: 1-5.
McQuate, G. T. 2014. Green light synergistally enhances male sweetpotato weevil response to sex pheromone. Sci. Rep. 4:4499. DOI:10.1038/srep04499.
Mpagalile, J. J., V. C. K. Silayo, H. S. Laswai, and W. R. Ballegu. 2007. Effect of different storage methods on the shelf-life of fresh sweetpotatoes in Gairo, Tanzania. Proceedings of the 13th ISTRC Symposium. pp.500-505.
Mullen, M. A. 1981. Sweetpotato weevil, cylas formicarius elegantulus (summers): development, fecundity, and longevity. Ann. Entomol. Soc. Am. 74:478-481.
Oladoye, C. O., I. F. Connerton, R. M. O. Kayode, P. F. Omojasola, and I. B. Kayode. 2016. Biomolecular characterization, identification, enzyme activities of molds and physiological changes in sweet potatoes (Ipomea batatas) stored under controlled atmospheric conditions. J. Zhejiang Univ. Sci. B. 17(4):317-332.
Onwueme, I. C. 1978. The tropical tuber crops: yam, cassava, sweet potato, cocoyams. John Wiley & Sons, New York. pp.248.
Osunde, Z. D., and B. A. Orhevba. 2009. Effects of storage conditions and storage period on nutritional and other qualities of stored yam (Dioscorea spp) tubers. African J. Food Agric. Nutr. Dev. 9:678-690.
Pardales, J. R. Jr., and C. B. Esquibel. 1997. Root development in sweetpotato stem cuttings as influenced by pre-planting, planting, and postplanting practices. Ann. Trop. Res. 19:56–65.
Pena, J. E., J. L. Sharp, and M. Wysoki. 2002. Tropical fruit pests and pollinators: biology, economic importance, natural enemies, and control. CABI Publishing, Oxon, UK, and New York, USA pp.430.
Picha, D. H. 1986a. HPLC determination of sugars in raw and baked sweet potatoes. J. Food Sci. 50: 1189–1190.
Picha, D. H. 1986b. Carbohydrate changes in sweet potatoes during curing and storage. J. Am. Soc. Hortic. Sci. 111: 889–892.
Picha, D. H. 1987. Chilling injury, respiration and sugar changes in sweet potatoes stored at low temperature. J. Am. Soc. Hortic. Sci. 112: 497–502.
Pitman, G. 1935. Oil content as criterion of olive maturity. J. Assoc. Offic. Agric. Chemists 18: 441-454.
Pretty, J., and Z. P. Bharucha. 2015. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects. 6:152-182.
Pugnaire, F. I., L. Serrano, and J. Pardos. 1999. Constraints by water stress on plant growth, In: Pessarakli, M. (ed.). Handbook of plant and crop stress. Marcel Decker Inc., New York, NY. pp.271–284.
Ravi, V., S. K. Naskar, T. Makeshkumar, B. Babu, and B. S. P. Krishnan. 2009. Molecular physiology of storage root formation and development in sweet potato [Ipomoea batatas (L.) Lam.]. J. Root Crops 35:1–27.
Reddy, G. V. P., N. Gadi, and A. J. Taianao. 2012. Efficient sex pheromone trapping: catching the sweetpotato weevil, cylas formicarius. J. Chem. Ecol. 38:846–853.
Reddy, G. V. P., S. Wu, R. C. Mendi, and R. H. Miller. 2014. Efficacy of pheromone trapping of the sweetpotato weevil (Coleoptera: Brentidae): Based on dose, septum age, attractive radius, and mass trapping. Environ. Entomol. 43: 767–773.
Ref. Miller G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428.
Rivero, R. C., E. R. Rodrı́guez, and C. D. Romero. 2003. Effects of current storage conditions on nutrient retention in several varieties of potatoes from Tenerife. Food Chem. 80:445-450.
Rumbaoa, R. G. O., D. F. Cornago, and I. M. Geronimo. 2009. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem. 113:1133–1138. doi: 10.1016/j.foodchem.2008.08.088.
Shekhar, S., D. Mishra, A. K. Buragohain, S. Chakraborty, and N. Chakraborty. 2015. Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.). Food Chem. 173:957-965.
Stahl, A. L. 1933. Changes in composition of Florida avocados in relation to maturity. Florida Agric. Expt. Sta. Bull. 259: 1-61.
Swezey, S. L., P. Goldman, J. Bryer and D. Nieto. 2006. Six year comparison between organic, IPM and conventional cotton production systems in the Northern San Joaquin Valley, California. Renew. Agri. Food Syst. 22(1):30-40.
Takahata, Y., T. Noda, and T. Nagata. 1992. Varietal diversity of free sugar composition in storage root of sweet potato. Jpn. J. Breed. 42: 515–521.
Talekar, N. S. 1982. Effects of a sweetpotato weevil (Coleoptera: Curculionidae) infestation on sweet potato root yields. J. Econ.Entomol. 75: 1042-1044.
Talekar, N. S., R. M. Laiand, and K. W. Cheng. 1989. Integrated control of sweetpotato weevil at Penghu island. Plant. Prot. Bull. 31: 185-191.
Tao, X., Y. W. Zhang, Y. S. Jiang, H. Y. Wang, and Y. Z. Zhang. 2010. Changes in root starch contents of sweet potato cultivars during storage. Chin. J. Appl. Environ. Biol. 16:741-744.
Tester, R. F., and J. Karkalas. 2001. The effects of environmental conditions on the structural features and physicochemical properties of starches. Starch Starke. 53: 513-519.
Trivedi, T. P., and D. B. Ahuja, 2011. Integrated pest management: Approaches and implementation. Indian J. Agric. Sci. 81:981-93.
Villordon, A., D. R. LaBonte, J. Solis, and N. Firon. 2012. Characterization of lateral root development at the onset of storage root initiation in Beauregard sweetpotato adventitious roots. HortScience 47:961–968.
Wilson, L. A., and S. B. Lowe. 1973. The anatomy of the root system in West Indian sweetpotato [Ipomoea batatas (L.) Lam.] cultivars. Ann. Bot. (Lond.) 37:633–643.
Wustman, R., and P. C. Struik. 2007. Seed and ware potato storage. Potato Res. 50: 351-355.
Yoshida, S., D. A. Forno, J. H. Cock and K. A. Gomez. 1976. Laboratory maual for physiological studies of rice. International rice research institute. Los Banos, Philippines. pp.81.
Zhang, Z., C. C. Wheatley, and H. Corke. 2002. Biochemical changes during storage of sweet potato roots differing in dry matter content. Postharvest Biol. 24:317-325.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊