跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡慶裕
研究生(外文):Cing-Yu Jian
論文名稱:上閘極二維材料電晶體及其元件特性之探討
論文名稱(外文):Top-gate 2D material transistors and their device performances
指導教授:陳怡嘉陳怡嘉引用關係林時彥
指導教授(外文):Yi-Jia ChenShih-Yen Lin
口試委員:陳怡嘉林時彥傅彥培
口試委員(外文):Yi-Jia ChenShih-Yen LinYen-Pei Fu
口試日期:2018-01-22
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:84
中文關鍵詞:二維材料原子層蝕刻上閘極場效電晶體合金薄膜異質結構二維電子氣
外文關鍵詞:2D materialsAtomic layer etchingTop-gate field effect transistorAlloy thin filmHetero-structure2DEG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們透過預先濺鍍過渡金屬再硫化的方式製備大面積的二硫化鉬薄膜,並且經由控制薄膜成長溫度,可以得到最佳成長溫度為780°C,接著我們控制靶材濺鍍時間,可以達成層數之控制,並經由原子層蝕刻系統,可以準確判斷層數,之後我們將最佳化之薄膜製作成上閘極場效電晶體,並對使用原子層沉積機台成長氧化層進行最佳化之處理,而我們也發現到於成長氧化層之前,於機台中先經過10 cycles的水前處理,能大幅度降低氧化層的表面粗糙度,並且也可以降低界面缺陷使電晶體的遲滯現象達到最小,且載子遷移率大幅度的提升。此外,我們透過預先共鍍過渡金屬再硫化的方式可以成長出合金薄膜,並且可以藉由控制靶材的瓦數來達到不同比例的合金薄膜,而合金薄膜中的二硫化鉬比例越多其薄膜的導電能力也比較好,此結果說明了,二硫化鉬薄膜的導電性比起二硫化鎢薄膜更加優秀,接下來我們於合金薄膜上成長單層的二硫化鉬薄膜形成異質結構薄膜並製作成上閘極場效電晶體,發現單層二硫化鉬薄膜/合金薄膜之異質結構其電流會大幅上升,並且於ID-VGS曲線可以發現有雙極性現象產生,此結果也表明了當單層二硫化鉬與合金薄膜形成異質結構時,會形成2DEG與2DHG之能帶結構,最終,我們成長四層的二硫化鉬薄膜於合金薄膜可以發現雙極性現象之消失,這說明了我們可以藉由控制二硫化鉬薄膜的厚度將異質結構接面隔離,使閘極的控制深度無法到達異質結構介面。
In this thesis, we have demonstrated that large-area molybdenum disulfide (MoS2) can be prepared by sulfurizing the pre-deposited transition metal films. Through tuning the growth temperature, we determine the growth temperature to be 780 °C. In addition, the layer number controllability is also achieved by controlling the sputtering times of the pre-deposited transition metal films. Through atomic layer etching, the layer number can be precise determined. Next, we have demonstrated top-gate MoS2 transistors without the film transferring procedure. With the introduction of H2O pretreatment for the Al2O3 dielectric layer grown on MoS2 surfaces by using ALD, the quality of surface is significantly improved. Moreover, the electrical hysteresis and field-effect mobility of transistor devices are also enhanced. Furthermore, we have demonstrated that alloy thin film can be prepared by sulfurizing the co-sputtering transition metal films. The alloy thin film of different proportions can be determined by controlling the sputtering powers of W and Mo targets. The increasing conductivity of the alloy thin films with increasing Mo compositions suggests that MoS2 is more conductive than WS2 prepared by using this method. Then, we growth monolayer MoS2 on alloy thin film which form 2D hetero-structure, the higher drain currents and ambipolar phenomenon observed for the devices indicate that the close oxide-semiconductor and hetero-structure interfaces will lead to 2DEG and 2DHG structures. Finally, we growth 4-layers MoS2 on alloy thin film and find ambipolar phenomenon disappearing. The results have revealed that we can control the hetero-junction by changing the layer number of MoS2 between gate metal and channel.
摘要 i
Abstract iii
目錄 v
圖目錄 vii
第一章 緒論 1
1-1二硫化鉬與二硫化鎢晶體結構與性質 1
1-2二硫化鉬與二硫化鎢之拉曼光譜分析 2
1-2-1二硫化鉬拉曼光譜分析 3
1-2-2二硫化鎢拉曼光譜分析 3
1-3二硫化鉬與二硫化鎢之光激發螢光光譜分析 4
1-3-1二硫化鉬光激發螢光光譜分析 4
1-3-2二硫化鎢光激發螢光光譜分析 6
1-4二硫化鉬與二硫化鎢之X光光電子能譜分析 7
1-4-1二硫化鉬之X光光電子能譜 7
1-4-2二硫化鎢之X光光電子能譜 8
1-5異質結構之性質 8
1-6過渡金屬硫族化合物之製備方式 9
1-6-1機械剝離法 9
1-6-2化學氣相沉積法 10
1-7研究方向與論文大綱 11
第二章 實驗儀器與實驗方法 13
2-1 薄膜成長系統 13
2-1-1過渡金屬濺鍍沉積系統 13
2-1-2過渡金屬硫化系統 15
2-2材料分析儀器 17
2-2-1拉曼光譜儀 (Raman spectrum) 17
2-2-2光激螢光光譜儀 (Photoluminescence, PL) 19
2-2-3 X光光電子能譜儀 (X - ray Photoelectron Spectroscopy) 19
2-2-4紫外光電子能譜儀 (Ultraviolet Photoelectron Spectroscopy) 20
2-2-5紫外光-可見光光譜儀 (Ultraviolet–visible spectroscopy) 21
2-2-6原子力顯微鏡 (Atomic Force Microscopy) 21
2-2-7穿透式電子顯微鏡 (Transmission Electron Microscopy) 23
2-3電晶體製程設備 23
2-3-1反應式離子蝕刻 (Reactive Ion Etching) 23
2-3-2原子層沉積 (Atomic Layer Deposition) 24
2-3-3熱蒸鍍沉積系統 (Thermal evaporation) 25
2-3-4氧電漿蝕刻 (O2 plasma etching) 26
第三章 二硫化鉬薄膜之最佳化與上閘極場效電晶體 29
3-1二硫化鉬薄膜成長與電晶體之製程 29
3-1-1過渡金屬沉積 29
3-1-2過渡金屬硫化 30
3-1-3上閘極式場效電晶體製程 31
3-2不同成長溫度之二硫化鉬薄膜特性 35
3-2-1以拉曼光譜分析不同成長溫度之二硫化鉬薄膜 35
3-2-2以光激發螢光光譜分析不同成長溫度之二硫化鉬薄膜 36
3-2-3以原子力顯微鏡分析不同成長溫度之二硫化鉬薄膜 37
3-3不同濺鍍秒數之二硫化鉬薄膜特性 38
3-3-1以拉曼光譜分析不同濺鍍秒數之二硫化鉬薄膜 39
3-3-2以原子層蝕刻系統判斷不同濺鍍秒數之二硫化鉬薄膜 39
3-3-3以原子力顯微鏡分析不同濺鍍秒數之二硫化鉬薄膜 40
3-4二硫化鉬之上閘極場效電晶體 41
3-4-1不同次數的水前處理所成長之氧化層之原子力顯微鏡 41
3-4-1不同次數的水前處理之氧化層對電晶體特性的影響 43
3-4-2不同氧化層成長溫度之電晶體特性 44
3-4-4不同次數的水前處理之機制 45
3-5小結 47
第四章 二硫化鉬-二硫化鎢之合金薄膜與異質結構 49
4-1二硫化鉬-二硫化鎢之合金薄膜與異質結構之製備 49
4-1-1二硫化鉬-二硫化鎢之合金薄膜樣品製備 49
4-1-2異質結構薄膜樣品製備 51
4-2二硫化鉬-二硫化鎢之合金薄膜的特性分析 51
4-2-1二硫化鉬-二硫化鎢之合金薄膜的拉曼光譜分析 51
4-2-2二硫化鉬-二硫化鎢之合金薄膜的光激發螢光光譜分析 52
4-2-3二硫化鉬-二硫化鎢之合金薄膜的X光光電子能譜分析 53
4-2-4二硫化鉬-二硫化鎢之合金薄膜的高解析穿透式電子顯微鏡 56
4-2-5二硫化鉬-二硫化鎢之合金薄膜的紫外光光電子能譜分析 58
4-2-6二硫化鉬-二硫化鎢之合金薄膜的紫外光-可見光光譜分析 59
4-3二硫化鉬-二硫化鎢之合金薄膜與異質結構上閘極場效電晶體 61
4-3-1合金薄膜與單層二硫化鉬/合金薄膜異質結構之兩端點元件比較 61
4-3-2單層二硫化鉬/合金薄膜異質結構之薄膜上閘極場效電晶體 63
4-3-3控制異質結構薄膜層數之電晶體影響 65
4-4小結 67
參考文獻 73
1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotechnology. 6, 147–150, (2011)
2. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, “Photoluminescence emission and raman response of monolayer MoS2, MoSe2, and WSe2.” Optics Express. 4908-4916, (2013)
3. Hualing Zeng and Xiaodong Cui, “An optical spectroscopic study on two dimensional group vi transition metal dichalcogenides”, Chem. Soc. Rev. 44, 2629, (2015)
4. Changgu Lee, Hugen Yan, Louis E. Brus, Tony F. Heinz, James Hone and Sunmin Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2”, ACS Nano. vol4, April, (2010)
5. Weijie Zhao, Zohreh Ghorannevis, Kiran Kumar Amara, Jing Ren Pang, Minglin Toh, Xin Zhang, Christian Kloc, Ping Heng Tan and Goki Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2”, Nanoscale. 5, 9677–9683, (2013)
6. Goki Eda, Hisato Yamaguchi, Damien Voiry, Takeshi Fujita, Mingwei Chen, and Manish Chhowalla, “Photoluminescence from chemically exfoliated MoS2”, Nano Lett. 11 (12), pp 5111–5116, (2011)
7. Xiaodong Xu, Wang Yao, Di Xiao and Tony F. Heinz, “Spin and pseudospins in layered transition metal dichalcogenides”, Nature Physics. 10, 343–350 (2014)
8. A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2”, Phys. Rev. B 83, 245213, (2011)
9. Weijie Zhao, Zohreh Ghorannevis, Leiqiang Chu, Minglin Toh, Christian Kloc, Ping-Heng Tan, and Goki Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2”, ACS Nano. 7 (1), pp 791–797, (2013)
10. Georgia Pagona, Carla Bittencourt, Raul Arenal and Nikos Tagmatarchis, “Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid. ” Chem. Commun, 51.65, 12950–12953, (2015)
11. Rachel S. Selinsky,a Qi Ding,a Matthew S. Faber,a John C. Wright and Song Jin, “Quantum dot nanoscale heterostructures for solar energy conversion”, Chem. Soc. Rev., 42, 2963-2985, (2013)
12. Hai Li, Gang Lu, Zongyou Yin, Qiyuan He, Hong Li, Qing Zhang, Hua Zhang, “Optical identification of single- and few-layer MoS2 sheets”, Small. 682–686, (2012)
13. Jaeho Jeon, Sung Kyu Jang, Su Min Jeon, Gwangwe Yoo, Yun Hee Jang, Jin-Hong Park and Sungjoo Lee, “Layer-controlled CVD growth of large-area two dimensional MoS2 films”, Nanoscale. 7, 1688–1695, (2015)
14. Arend M. van der Zande, Pinshane Y. Huang, Daniel A. Chenet, Timothy C. Berkelbac, YuMeng You, Gwan-Hyoung Lee, Tony F. Heinz, David R. Reichman, David A. Muller & James C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide”, Nature Materials. 12, 554–561, (2013)
15. Catarina Costa Moura, Rahul S. Tare, Richard O. C. Oreffo, Sumeet Mahajan, “Raman spectroscopy and coherent anti-Stokes raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration”, J. R. Soc. Interface. 13, (2016)
16. Hyungjun Kim Han-Bo-Ram Lee.-J.Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices”, Thin Solid Films. 517, 2563–2580, (2009)
17. Kuan-Chao Chen, Tung-Wei Chu, Chong-Rong Wu, Si-Chen Lee, and Shih-Yen Lin, “Layer number controllability of transition-metal dichalcogenides and the establishment of hetero-structures by using sulfurization of thin transition metal films”, J. of Phys. D: Appl. Phy., J. of Phys. D: Appl. Phy., vol. 50, no. 6, pp. 064001, (2017)
18. Kuan-Chao Chen, Tung-Wei Chu, Chong-Rong Wu, Si-Chen Lee and Shih-Yen Lin, “Atomic layer etchings of transition metal dichalcogenides with post healing procedures: equivalent selective etching of 2D crystal hetero-structures”, 2D Materials. Volume 4, Number 3, (2017)
19. Kejia Jiao, Chunyang Duan, Xiaofeng Wu, Jiayuan Chen, Yu Wang and Yunfa Chen, “The role of MoS2 as an interfacial layer in graphene/silicon solar cells”, Physical Chemistry Chemical Physics, 17(12), 8182-8186
20. Nengjie Huo, Jun Kang, Zhongming Wei, Shu-Shen Li, Jingbo Li, and Su-Huai Wei, “Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors”, Advanced Functional Materials, 24(44), 7025-7031
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊