跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:DUY VAN PHAM
研究生(外文):DUY VAN PHAM
論文名稱:Synthesis, Characterization and Applications of One- and Two-Dimensional MoOx and VO2 Nanostructres
論文名稱(外文):Synthesis, Characterization and Applications of One- and Two-Dimensional MoOx and VO2 Nanostructres
指導教授:馬遠榮馬遠榮引用關係
指導教授(外文):Yuan-Ron Ma
口試委員:劉鏞沈志霖蔡志宏賴建智
口試委員(外文):Yung LiouJi-Lin ShenChih-Hung TsaiChien-Chih Lai
口試日期:2018-07-24
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:117
外文關鍵詞:SynthesisCharacterizationOptical bandgapPseudocapacitors1D MoOx nanorods2D VO2 nanosheets
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
Transition metal oxides are well known for their large variety of physical and chemical properties, such as electronic, thermoelectric, magnetic, optical, and electrochemical properties. Among the transition metal oxides, molybdenum oxide and vanadium oxide are two of the interesting materials due to their stable and metastable oxidation states with varying valences. The morphology of molybdenum oxide and vanadium oxide can be satisfied into a variety of forms, including zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) nanostructures. Among all nanostructured materials, 1D and 2D nanostructures of molybdenum oxide and vanadium oxide possess versatile and excellent electrical, optical, and electrochemical properties. Due to their versatile optical, electronic, and electrochemical properties, 1D and 2D nanostructures of molybdenum and vanadium oxide have the potential for use in practical devices such as electrochromic devices, field emission devices, photocatalysts, photodetectors, gas sensors, batteries, and supercapacitors.
One-dimensional nanorods of MoO2, MoO3, Magnéli-phase Mo4O11, and two-dimensional nanosheets of VO2 on conducting indium-tin-oxide (ITO) thin films coated on glass substrates were effortlessly prepared using the hot-filament metal oxide vapor deposition technique. Thermal reduction and oxidation were then used to process 1D Magnéli-phase Mo4O11 nanorods and 2D V2O5 nanosheets into 1D MoO2 nanorods and 2D VO2 nanosheets, while 1D MoO3 nanorods were prepared by using the thermal oxidation process of 1D Magnéli-phase Mo4O11 nanorods. The nanostructures prepared at higher synthesis temperatures were thinner and longer. The 1D Magnéli-phase Mo4O11 nanorods consisted of various combinations of two orthorhombic (α) and monoclinic (η) crystals and varying mixtures of Mo4+, Mo5+, and Mo6+ (3d5/2 and 3d3/2) cations. The 1D MoO2 nanorods were comprised of only monoclinic crystals and various complex mixtures of Mo4+, Mo5+, and Mo6+ (3d5/2 and 3d3/2) cations. The 1D MoO3 nanorods contained only orthorhombic crystals and varying mixtures of Mo5+ and Mo6+ (3d5/2 and 3d3/2) cations. The 2D VO2 nanosheets possessed a monoclinic structure and only V4+ (2p3/1 and 2p1/2) cations.
The optical properties of 1D Magnéli-phase Mo4O11 nanorods synthesized at varying synthesis temperatures were studied through absorbance and transmittance measurements. The bandgap of 1D Magnéli-phase Mo4O11 nanorods can be acquired by using the absorbance spectra. The bandgap decreases linearly with the elevation of temperature, meaning that the bandgaps of the 1D Magnéli-phase Mo4O11 nanorods can be tuned or tailored without doping with other materials. Obviously, the bandgap tuning occurs due to varying combinations of two orthorhombic (α) and monoclinic (η) phases and various mixtures of the Mo4+, Mo5+, and Mo6+cations.
The electrochemical characterization, charge storing properties, and capacitive performance of the 1D MoO2, MoO3, Magnéli-phase Mo4O11 nanorods, and 2D VO2 nanosheets was examined through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) measurement and electrochemical impedance (EI) spectroscopy. The synthesis of 1D MoO2, MoO3, Magnéli-phase Mo4O11 nanorods, and 2D VO2 nanosheets at higher temperatures improves their capacitive behavior. The electrochemical results verify that the capacitive performance of the 1D MoO2 nanorods and 2D VO2 nanosheets are superior to that of the 1D MoO3 or Magnéli-phase Mo4O11 nanorods, making them suitable for the electrode materials in supercapacitors.
Abstract i
Dedication iii
Acknowledgements iv
List of Tables vi
List of Figures vii
Table of Contents xi
Chapter 1 Introduction
1.1 Transition metal oxide and nanostructure materials 1
1.2 Optical principles 2
1.2.1 Refraction 3
1.2.2 Reflection 4
1.2.3 Absorption 5
1.2.4 Transmission 6
1.3 Electrochemical principles 6
1.3.3 Fuel cells 7
1.3.2 Batteries 8
1.3.1 Capacitors 10
1.3.4 Supercapacitors 11
1.3.4.1 Electric double layer capacitor 11
1.3.4.2 Pseudocapacitor 12
1.3.4.3 Hybrid capacitor 14
1.3.4.4 Comparison of battery and supercapacitor 15
1.3.5 Supercapacitor electrode materials 16
1.3.5.1 Carbon-based materials 17
1.3.5.2 Transition metal oxides 17
1.3.5.3 Conducting polymers 18
1.4 Motivation 19
Chapter 2 Techniques for Synthesis and Characterization
2.1 Synthesis techniques 23
2.1.1 Hot filament metal oxide vapor deposition (HFMOVD) technique 24
2.1.2 Synthesis of 1D MO4O11 nanorods on ITO thin film using (HFMOVD) technique 25
2.1.3 Synthesis of 2D V2O5 nanosheets on ITO thin film using (HFMOVD) technique 25
2.1.4 Synthesis of 1D MoO2 and MoO3 nanorods on ITO thin film using quartz tube furnace 26
2.1.5 Synthesis of 1D MoO2 and MoO3 nanorods on ITO thin film using quartz tube furnace 26
2.2 Characterization techniques 27
2.2.1 Field emission scanning electron microscopy 27
2.2.2 X-ray Diffraction 28
2.2.3 Transmission electron microscopy 29
2.2.4 X-ray photoelectron microscopy 31
2.2.5 Raman spectroscopy 32
2.2.6 UV-VIS-NIR spectroscopy 33
2.3 Electrochemical techniques 36
2.3.1 Cyclic voltammetry 36
2.3.2 Galvanostatic charge-discharge 38
2.3.3 Electrochemical impedance spectroscopy 39
Chapter 3 Results and Discussion
3.1 Optical properties of 1D MO4O11 nanorods 41
3.1.1 Morphological studies 41
3.1.2 X-ray diffraction analysis 44
3.1.3 Transmission electron microscopy analysis 46
3.1.4 Raman spectroscopic analysis 47
3.1.5 X-ray photoelectron spectroscopy analysis 49
3.1.6 Optical absorption studies 50
3.2 Pseudocapacitive properties of 1D MoO2, Mo4O11, and MoO3 nanorods 53
3.2.1 Morphological studies 53
3.2.2 X-ray Diffraction analysis 56
3.2.3 X-ray photoelectron spectroscopy analysis 57
3.2.4 Cyclic voltammetry studies 60
3.2.5 Galvanostatic charge-discharge studies 63
3.2.6 Impedance spectroscopy studies 68
3.3 Pseudocapacitive properties of 2D VO2 nanosheets 71
3.3.1 Morphological studies 71
3.3.2 X-ray Diffraction analysis 74
3.3.3 X-ray photoelectron spectroscopy analysis 75
3.3.4 Cyclic voltammetry studies 76
3.3.5 Galvanostatic charge-discharge studies 78
3.3.6 Impedance spectroscopy studies 81
Chapter 4 Conclusions and Future prospects
4.1 Conclusions 85
4.2 Future prospects 87
References 89
[1] P. Ashrit, Transition metal oxide thin film based chromogenics and devices, Elsevier, pp. 13-72 (2017).
[2] R. S. Devan, R. A. Patil, J.-H. Lin, and Y.-R. Ma, One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22, 3326-3370 (2012)
[3] H. J. Bolink, E. Coronado, J. Orozco, and M. Sessolo, Efficient polymer light-emitting diode using air-stable metal oxides as electrodes. Adv. Mater. 21, 79-82 (2009)
[4] A. V. Emeline, G. V. Kataeva, A. V. Panasuk, V. K. Ryabchuk, N. V. Sheremetyeva, and N. Serpone, Effect of surface photoreactions on the photocoloration of a wide band gap metal oxide:  probing whether surface reactions are photocatalytic. J. Phys. Chem. B 109, 5175-5185 (2005)
[5] S. Lany, Band-structure calculations for the 3d transition metal oxides in GW. Phys. Rev. B 87, 085112 (2013)
[6] D. Klimm, Electronic materials with a wide band gap: recent developments. IUCrJ. 1, 281-90 (2014)
[7] S. Lany, Semiconducting transition metal oxides. J. Phys. Condens. Matter. 27, 283203 (2015)
[8] J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, and A. Kahn, Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24, 5408-27 (2012)
[9] A. R. Gheisi, C. Neygandhi, A. K. Sternig, E. Carrasco, H. Marbach, D. Thomele, and O. Diwald, O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles. Phys. Chem. Chem. Phys. 16, 23922-9 (2014)
[10] A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances. Appl. Phys. Lett. 98, 131111 (2011)
[11] M.-J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476-1481 (2009)
[12] P. Yang, P. Sun, and W. Mai, Electrochromic energy storage devices. Mater. Today 19, 394-402 (2016)
[13] J.-Z. Chen, W.-Y. Ko, Y.-C. Yen, P.-H. Chen, and K.-J. Lin, Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6, 6633-6639 (2012)
[14] R. A. Patil, R. S. Devan, J.-H. Lin, Y.-R. Ma, P. S. Patil, and Y. Liou, Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods. Sol. Energ. Mat. Sol. C. 112, 91-96 (2013)
[15] R.-T. Wen, C. G. Granqvist, and G. A. Niklasson, Anodic electrochromism for energy-efficient windows: cation/anion-based surface processes and effects of crystal facets in nickel oxide thin films. Adv. Funct. Mater. 25, 3359-3370 (2015)
[16] A. Llordes, G. Garcia, J. Gazquez, and D. J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323-6 (2013)
[17] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690-6 (2012)
[18] C. Zhou, Y. Zhang, Y. Li, and J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13, 2078-85 (2013)
[19] R. B. Rakhi, W. Chen, D. Cha, and H. N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12, 2559-67 (2012)
[20] P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong, and Z. L. Wang, Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617-2626 (2013)
[21] P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C. P. Wong, and Z. L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731-6 (2014)
[22] Z. Hu, X. Xiao, C. Chen, T. Li, L. Huang, C. Zhang, J. Su, L. Miao, J. Jiang, Y. Zhang, and J. Zhou, Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy 11, 226-234 (2015)
[23] D. P. Norton, Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater. Sci. Eng. R. 43, 139-247 (2004)
[24] Y.-T. Kim, J. H. Han, B. H. Hong, and Y.-U. Kwon, Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Adv. mater. 22, 515-518 (2010)
[25] W. K. Bae, K. Char, H. Hur, and S. Lee, Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients. Chem. Mater. 20, 531-539 (2008)
[26] X. Yan, X. Cui, and L.-s. Li, Synthesis of Large, Stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 132, 5944-5945 (2010)
[27] J. Shen, Y. Zhu, X. Yang, and C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686-99 (2012)
[28] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, and H. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435-2445 (2016)
[29] B. Balasubramanian, K. L. Kraemer, N. A. Reding, R. Skomski, S. Ducharme, and D. J. Sellmyer, Synthesis of monodisperse TiO2−paraffin core−shell nanoparticles for improved dielectric properties. ACS Nano 4, 1893-1900 (2010)
[30] T. Suzuki, K.-i. Okazaki, S. Suzuki, T. Shibayama, S. Kuwabata, and T. Torimoto, Nanosize-controlled syntheses of indium metal particles and hollow indium oxide particles via the sputter deposition technique in ionic liquids. Chem. Mater. 22, 5209-5215 (2010)
[31] R. A. Patil, M. K. Wei, P. H. Yeh, J. B. Liang, W. T. Gao, J. H. Lin, Y. Liou, and Y. R. Ma, Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted photoluminescence. Nanoscale 8, 3565-71 (2016)
[32] M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, "Smart" diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis. Nano Lett. 10, 85-91 (2010)
[33] S. S. Kalanur, Y. J. Hwang, S. Y. Chae, and O. S. Joo, Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 1, 3479–3488 (2013)
[34] R. S. Devan, W.-D. Ho, J.-H. Lin, S. Y. Wu, Y.-R. Ma, P.-C. Lee, and Y. Liou, X-ray diffraction study of a large-scale and high-density array of one-dimensional crystalline tantalum pentoxide nanorods. Cryst. Growth Des. 8, 4465-4468 (2008)
[35] L. Vigderman, B. P. Khanal, and E. R. Zubarev, Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 24, 4811-4841, (2012)
[36] A. Singh, H. Geaney, F. Laffir, and K. M. Ryan, Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J. Am. Chem. Soc. 134, 2910-3 (2012)
[37] E. C. Cho, P. H. Camargo, and Y. Xia, Synthesis and characterization of noble-metal nanostructures containing gold nanorods in the center. Adv. Mater. 22, 744-8 (2010)
[38] Y. Ren, W. K. Chim, S. Y. Chiam, J. Q. Huang, C. Pi, and J. S. Pan, Formation of nickel oxide nanotubes with uniform wall thickness by low-temperature thermal oxidation through understanding the limiting effect of vacancy diffusion and the kirkendall phenomenon. Adv. Funct. Mater. 20, 3336-3342 (2010)
[39] P. Roy, S. Berger, and P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904-39 (2011)
[40] J. R. Sanchez-Valencia, T. Dienel, O. Groning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61-4 (2014)
[41] M. Sathiya, A. S. Prakash, K. Ramesha, J. M. Tarascon, and A. K. Shukla, V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 133, 16291-9 (2011)
[42] W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu, X. Qian, D. Gu, Y. Xia, B. Tu, and D. Zhao, A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy. Mater. 1, 382-386 (2011)
[43] G. Wee, H. Z. Soh, Y. L. Cheah, S. G. Mhaisalkar, and M. Srinivasan, Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J. Mater. Chem. 20, 6720-6725 (2010)
[44] Y. Ding, Y. Wang, L. Su, H. Zhang, and Y. Lei, Preparation and characterization of NiO–Ag nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective non-enzymatic glucose sensor. J. Mater. Chem. 20, 9918-9926 (2010)
[45] H. Pang, Q. Lu, Y. Zhang, Y. Li, and F. Gao, Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2, 920-2 (2010)
[46] M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, Continuous gas-phase synthesis of nanowires with tunable properties. Nature 492, 90-4 (2012)
[47] H. B. Wu, H. H. Hng, and X. W. Lou, Direct synthesis of anatase TiO(2) nanowires with enhanced photocatalytic activity. Adv. Mater. 24, 2567-71 (2012)
[48] M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan, and L. J. Chen, Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. Small 3, 658-64 (2007)
[49] D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li, and Y. Lu, Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 134, 14283-6 (2012)
[50] N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, 25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications. Adv. Mater. 26, 2137-84 (2014)
[51] K. Shen, W. Qian, N. Wang, J. Zhang, and F. Wei, Direct synthesis of c-axis oriented ZSM-5 nanoneedles from acid-treated kaolin clay. J. Mater. Chem. A 1, 3272-3275 (2013)
[52] G. Q. Zhang, H. B. Wu, H. E. Hoster, M. B. Chan-Park, and X. W. Lou, Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy. Environ. Sci. 5, 9453-9456 (2012)
[53] S. Vallejos, P. Umek, T. Stoycheva, F. Annanouch, E. Llobet, X. Correig, P. De Marco, C. Bittencourt, and C. Blackman, Single-step deposition of Au- and Pt-nanoparticle-functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays. Adv. Funct. Mater. 23, 1313-1322 (2013)
[54] B. Wang, J. S. Chen, Z. Wang, S. Madhavi, and X. W. D. Lou, Green synthesis of nio nanobelts with exceptional pseudo-capacitive properties. Adv. Energy. Mater. 2, 1188-1192 (2012)
[55] G.-R. Li, Z.-P. Feng, J.-H. Zhong, Z.-L. Wang, and Y.-X. Tong, Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43, 2178-2183 (2010)
[56] Z. Zhao, J. Tian, Y. Sang, A. Cabot, and H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27, 2557-82 (2015)
[57] J. Lu, C. Nan, L. Li, Q. Peng, and Y. Li, Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6, 55-64 (2012)
[58] R. Jin, G. Chen, J. Pei, J. Sun, and Y. Wang, Controllable synthesis and electrochemical hydrogen storage properties of Sb2Se3 ultralong nanobelts with urchin-like structures. Nanoscale 3, 3893-9 (2011)
[59] H. Liu, L. Hu, K. Watanabe, X. Hu, B. Dierre, B. Kim, T. Sekiguchi, and X. Fang, Cathodoluminescence modulation of ZnS nanostructures by morphology, doping, and temperature. Adv. Funct. Mater. 23, 3701-3709 (2013)
[60] L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321-5 (2010)
[61] Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of Co2 into renewable hydrocarbon fuel. J. Am. Chem. Soc. 132, 14385-14387 (2010)
[62] B. Santara, P. K. Giri, K. Imakita, and M. Fujii, Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 5, 5476-88 (2013)
[63] Z. Deng, D. Cao, J. He, S. Lin, S. M. Lindsay, and Y. Liu, Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 6, 6197-6207 (2012)
[64] J. J. Cha, D. Kong, S. S. Hong, J. G. Analytis, K. Lai, and Y. Cui, Weak antilocalization in Bi2(SexTe1-x)3 nanoribbons and nanoplates. Nano Lett. 12, 1107-11 (2012)
[65] H. Tang, D. Liang, R. L. J. Qiu, and X. P. A. Gao, Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 5, 7510-7516 (2011)
[66] H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, and Z. Tang, Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 27, 1117-23 (2015)
[67] N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23, 5511-5517 (2013)
[68] Y. Min, G. D. Moon, B. S. Kim, B. Lim, J. S. Kim, C. Y. Kang, and U. Jeong, Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J. Am. Chem. Soc. 134, 2872-5 (2012)
[69] L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, and Q. Wang, Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 135, 1213-6 (2013)
[70] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6, 5988-5994 (2012)
[71] C. Tan, X. Qi, X. Huang, J. Yang, B. Zheng, Z. An, R. Chen, J. Wei, B. Z. Tang, W. Huang, and H. Zhang, Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. Adv. Mater. 26, 1735-9 (2014)
[72] H. Duan, N. Yan, R. Yu, C. R. Chang, G. Zhou, H. S. Hu, H. Rong, Z. Niu, J. Mao, H. Asakura, T. Tanaka, P. J. Dyson, J. Li, and Y. Li, Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014)
[73] S. W. Hsu, C. Ngo, and A. R. Tao, Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. Nano Lett. 14, 2372-80 (2014)
[74] M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, L. Polavarapu, W. L. Koh, J. Zhang, Q. H. Xu, and M. Y. Han, One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures. J. Am. Chem. Soc. 133, 2052-5 (2011)
[75] G. Kim, C. Jo, W. Kim, J. Chun, S. Yoon, J. Lee, and W. Choi, TiO2 nanodisks designed for Li-ion batteries: a novel strategy for obtaining an ultrathin and high surface area anode material at the ice interface. Energy Environ. Sci. 6, 2932–2938, (2013)
[76] R. S. Devan, J. H. Lin, Y. J. Huang, C. C. Yang, S. Y. Wu, Y. Liou, and Y. R. Ma, Two-dimensional single-crystalline Zn hexagonal nanoplates: size-controllable synthesis and X-ray diffraction study. Nanoscale 3, 4339-45 (2011)
[77] K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari, and J. J. Vittal, Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy Environ. Sci. 3, 457–464, (2010)
[78] S. Han, L. Hu, Z. Liang, S. Wageh, A. A. Al-Ghamdi, Y. Chen, and X. Fang, One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/Graphene composites with enhanced photocatalytic activity. Adv. Funct. Materi. 24, 5719-5727 (2014)
[79] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933-937 (1996)
[80] B. Wu, A. Heidelberg, and J. J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525-9 (2005)
[81] K. Oka, T. Yanagida, K. Nagashima, T. Kawai, J.-S. Kim, and B. H. Park, Resistive-switching memory effects of NiO nanowire/metal junctions. J. Am. Chem. Soc. 132, 6634-6635 (2010)
[82] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148-53 (2010)
[83] L. Mandal, M. Deo, A. Yengantiwar, A. Banpurkar, J. Jog, and S. Ogale, A quasi-liquid iontronic-electronic light-harvesting hybrid photodetector with giant response. Adv. Mater. 24, 3686-91 (2012)
[84] T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater. 20, 4233-4248 (2010)
[85] Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, and Z. L. Wang, Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 13, 607-13 (2013)
[86] F. H. Chu, C. W. Huang, C. L. Hsin, C. W. Wang, S. Y. Yu, P. H. Yeh, and W. W. Wu, Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties. Nanoscale 4, 1471-5 (2012)
[87] C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, and N. Yamazoe, Hierarchical alpha-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl. Mater. Interfaces 6, 12031-7 (2014)
[88] F. Ji, X. Ren, X. Zheng, Y. Liu, L. Pang, J. Jiang, and S. F. Liu, 2D-MoO3 nanosheets for superior gas sensors. Nanoscale 8, 8696-703 (2016)
[89] D. K. Roh, R. Patel, S. H. Ahn, D. J. Kim, and J. H. Kim, Preparation of TiO2 nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells. Nanoscale 3, 4162-9 (2011)
[90] S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666-71 (2011)
[91] R. Krahne, G. Morello, A. Figuerola, C. George, S. Deka, and L. Manna, Physical properties of elongated inorganic nanoparticles. Phys. Rep. 501, 75-221 (2011)
[92] W. D. Callister, and W. D. C. William D., Materials Science and Engineering: An Introduction, 7th Edition, John Wiley & Sons, Limited, pp. 690-714 (2007)
[93] D. R. Askeland, P. P. Fulay, and W. J. Wright, The Science and Engineering of Materials, 6th Edition, CL-Engineering, Cengage Learning, pp. 757-785 (2011)
[94 J. H. Simmons, and K. S. Potter, in Optical Materials, Academic Press, San Diego, pp. 191-263 (2000)
[95] B. C. H. Steele, and A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345 (2001)
[96] M. Díaz, A. Ortiz, and I. Ortiz, Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 469, 379-396 (2014)
[97] O. Z. Sharaf, and M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications. Renewable Sustainable Energy Rev. 32, 810-853 (2014)
[98] M. Winter, and R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245-4270 (2004)
[99] J. Zhu, C. Chen, Y. Lu, J. Zang, M. Jiang, D. Kim, and X. Zhang, Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon 101, 272-280 (2016)
[100] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857-3886 (2014)
[101] J. Zhu, Y. Ge, D. Kim, Y. Lu, C. Chen, M. Jiang, and X. Zhang, A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries. Nano Energy 20, 176-184 (2016)
[102] T. R. Crompton, in Battery Reference Book (Third Edition), Newnes, Oxford, pp. 1-64 (2000)
[103] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015)
[104] C. Liu, Z. G. Neale, and G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109-123 (2016)
[105] Z. Wang, L. Zhou, and X. W. David Lou, Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24, 1903-1911 (2012)
[106] H. B. Wu, J. S. Chen, H. H. Hng, and X. W. Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4, 2526-42 (2012)
[107] L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, (2011)
[108] J. Wang, and X. Sun, Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8, 1110-1138 (2015)
[109] L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, and J. B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4, 269-284 (2011)
[110] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252-264 (2015)
[111] J. Ying, C. Jiang, and C. Wan, Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. J. Power Sources 129, 264-269 (2004)
[112] M. J. Lee, S. Lee, P. Oh, Y. Kim, and J. Cho, High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett. 14, 993-9 (2014)
[113] S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, and L. Qi, Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 7, 1924-1930 (2014)
[114] E. M. Purcell, and D. J. Morin, Electricity and Magnetism, Cambridge University Press, (2013)
[115] A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials. Renewable Sustainable Energy Rev. 58, 1189-1206 (2016)
[116] G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797-828 (2012)
[117] J. Wang, S. Dong, B. Ding, Y. Wang, X. Hao, H. Dou, Y. Xia, and X. Zhang, Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. Natl. Sci. Rev. 4, 71-90 (2017)
[118] B. E. Conway, V. Birss, and J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66, 1-14 (1997)
[119] C.-M. Chuang, C.-W. Huang, H. Teng, and J.-M. Ting, Effects of Carbon Nanotube Grafting on the Performance of Electric Double Layer Capacitors. Energy Fuels 24, 6476-6482 (2010)
[120] Z.-z. Zhu, G.-c. Wang, M.-q. Sun, X.-w. Li, and C.-z. Li, Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim. Acta 56, 1366-1372 (2011)
[121] G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2, 213-234 (2013)
[122] P. Simon, and Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845-854 (2008)
[123] V. Aravindan, J. Gnanaraj, Y. S. Lee, and S. Madhavi, Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 114, 11619-35 (2014)
[124] X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3, 839-855 (2011)
[125] D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, and A. M. Lubers, Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 38, 226-252 (2009)
[126] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537-1541 (2011)
[127] H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald, and R. S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 3317 (2014)
[128] J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. M. Biener, K. A. Rose, and T. F. Baumann, Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4, 656-667 (2011)
[129] S. Talapatra, S. Kar, S. K. Pal, R. Vajtai, L. Ci, P. Victor, M. M. Shaijumon, S. Kaur, O. Nalamasu, and P. M. Ajayan, Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112-6 (2006)
[130] Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang, and X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014)
[131] S. Wang, L. Ma, M. Gan, S. Fu, W. Dai, T. Zhou, X. Sun, H. Wang, and H. Wang, Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J. Power Sources 299, 347-355 (2015)
[132] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 34, 4889-4899 (2009)
[133] A. N. Patel, M. G. Collignon, M. A. O'Connell, W. O. Hung, K. McKelvey, J. V. Macpherson, and P. R. Unwin, A new view of electrochemistry at highly oriented pyrolytic graphite. J. Am. Chem. Soc. 134, 20117-30 (2012)
[134] X. Yu, S. Yun, J. S. Yeon, P. Bhattacharya, L. Wang, S. W. Lee, X. Hu, and H. S. Park, Emergent Pseudocapacitance of 2D Nanomaterials. Adv. Energy Mater. 8, 1702930 (2018)
[135] V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597-1614, (2014)
[136] P. Wang, H. Liu, Y. Xu, Y. Chen, J. Yang, and Q. Tan, Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F.g−1 for a supercapacitor. Electrochim. Acta 194, 211-218 (2016)
[137] Y. Jiang, L. Chen, H. Zhang, Q. Zhang, W. Chen, J. Zhu, and D. Song, Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem. Eng. J. 292, 1-12 (2016)
[138] Z. Lu, Z. Chang, J. Liu, and X. Sun, Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 4, 658-665 (2011)
[139] A. M. Bryan, L. M. Santino, Y. Lu, S. Acharya, and J. M. D’Arcy, Conducting Polymers for Pseudocapacitive Energy Storage. Chem. Mater. 28, 5989-5998 (2016)
[140] J. Huang, K. Wang, and Z. Wei, Conducting polymernanowire arrays with enhanced electrochemical performance. J. Mater. Chem. 20, 1117-1121 (2010)
[141] H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources 190, 578-586 (2009)
[142] J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, Vapor-Phase Polymerization of Nanofibrillar Poly(3,4-ethylenedioxythiophene) for Supercapacitors. ACS Nano 8, 1500-1510 (2014)
[143] S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q. H. Wang, M. Bhaskaran, S. Sriram, M. S. Strano, and K. Kalantar-zadeh, Transition metal oxides–Thermoelectric properties. Prog. Mater Sci. 58, 1443-1489 (2013)
[144] P. Umek, A. Zorko, and D. Arčon, in Ceramics Science and Technology Volume 2: Materials and Properties, Edited R. Riedel and I.-W. Chen, John Wiley & Sons, Weinheim (2011)
[145] Y. Tokura, Optical and magnetic properties of transition metal oxides. Curr. Opin. Solid State Mater. Sci. 3, 175-180 (1998)
[146] J. L. Musfeldt, in Functional Metal Oxide Nanostructures, Edited J. Wu, J. Cao, W.-Q. Han, A. Janotti and H.-C. Kim, Springer New York, New York, NY, pp. 87-126 (2012)
[147] Y. Yuan, C. Zhan, K. He, H. Chen, W. Yao, S. Sharifi-Asl, B. Song, Z. Yang, A. Nie, X. Luo, H. Wang, S. M. Wood, K. Amine, M. S. Islam, J. Lu, and R. Shahbazian-Yassar, The influence of large cations on the electrochemical properties of tunnel-structured metal oxides. Nat. Commun. 7, 13374 (2016)
[148] L. Kumari, Y.-R. Ma, C.-C. Tsai, Y.-W. Lin, S. Y. Wu, K.-W. Cheng, and Y. Liou, X-ray diffraction and Raman scattering studies on large-area array and nanobranched structure of 1D MoO2 nanorods. Nanotechnology 18, 115717, (2007)
[149] A. Chithambararaj, N. S. Sanjini, S. Velmathi, and A. C. Bose, Preparation of h-MoO3 and alpha-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation. Phys. Chem. Chem. Phys. 15, 14761-14769 (2013)
[150] I. A. de Castro, R. S. Datta, J. Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, and K. Kalantar-Zadeh, Molybdenum oxides - from fundamentals to functionality. Adv. Mater. 29, 1701619 (2017)
[151] D. Chen, M. Liu, L. Yin, T. Li, Z. Yang, X. Li, B. Fan, H. Wang, R. Zhang, Z. Li, H. Xu, H. Lu, D. Yang, J. Sun, and L. Gao, Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance. J. Mater. Chem. 21, 9332 (2011)
[152] M. Hesse, B. von Boehn, A. Locatelli, A. Sala, T. O. Mentes, and R. Imbihl, Island ripening via a polymerization-depolymerization mechanism. Phys. Rev. Lett. 115, 136102 (2015)
[153] H. Kim, Y. Kim, K. S. Kim, H. Y. Jeong, A. R. Jang, S. H. Han, D. H. Yoon, K. S. Suh, H. S. Shin, T. Kim, and W. S. Yang, Flexible thermochromic window based on hybridized VO2/Graphene. ACS Nano 7, 5769-5776 (2013)
[154] S. Zhang, I. S. Kim, and L. J. Lauhon, Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams. Nano Lett. 11, 1443-1447 (2011)
[155] B. Chen, J. Laverock, D. Newby, T.-Y. Su, K. E. Smith, W. Wu, L. H. Doerrer, N. F. Quackenbush, S. Sallis, L. F. J. Piper, D. A. Fischer, and J. C. Woicik, Electronic structure of β-NaxV2O5 (x ≈ 0.33) polycrystalline films: growth, spectroscopy, and theory. J. Phys. Chem. C 118, 1081-1094 (2014)
[156] E. Canadell, M. H. Whangbo, C. Schlenker, and C. Escribe-Filippini, Band electronic structure study of the electronic instability in the Magneli phase molybdenum oxide [Mo4O11]. Inorg. Chem. 28, 1466-1472 (1989)
[157] U. Schwingenschlögl, and V. Eyert, The vanadium Magnéli phases VnO2n-1. Ann. Phys. (Leipzig). 13, 475-510 (2004)
[158] A. L. Pergament, Metal-insulator transition temperatures and excitonic phases in vanadium oxides. ISRN Condens. Matter Phys. 5, 605913 (2011)
[159] Y. Cui, X. Wang, Y. Zhou, R. Gordon, and S. Ramanathan, Synthesis of vanadium dioxide thin films on conducting oxides and metal–insulator transition characteristics. J. Cryst. Growth 338, 96-102 (2012)
[160] S. Thiagarajan, M. Thaiyan, and R. Ganesan, Physical property exploration of highly oriented V2O5 thin films prepared by electron beam evaporation. New J. Chem. 39, 9471-9479 (2015)
[161] J. Huotari, R. Bjorklund, J. Lappalainen, and A. Lloyd Spetz, Pulsed laser deposited nanostructured vanadium oxide thin films characterized as ammonia sensors. Sens. Actuators B. 217, 22-29 (2015)
[162] B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen, J. Ma, L. Tong, and T. Yu, Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv. Mater. 21, 2436-2440 (2009)
[163] D. Vernardou, P. Paterakis, H. Drosos, E. Spanakis, I. M. Povey, M. E. Pemble, E. Koudoumas, and N. Katsarakis, A study of the electrochemical performance of vanadium oxide thin films grown by atmospheric pressure chemical vapour deposition. Sol. Energ. Mat. Sol. C. 95, 2842-2847 (2011)
[164] J. Wu, W. Huang, Q. Shi, J. Cai, D. Zhao, Y. Zhang, and J. Yan, Effect of annealing temperature on thermochromic properties of vanadium dioxide thin films deposited by organic sol–gel method. Appl. Surf. Sci. 268, 556-560 (2013)
[165] T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, and D. Golberg, Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547-52 (2010)
[166] S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. Zuo, M. Balasubramanian, V. B. Prakapenka, C. S. Johnson, and T. Rajh, Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530-538 (2012)
[167] H. Kim, D. Y. Kim, Y. Kim, S. S. Lee, and K. Park, Na insertion mechanisms in vanadium oxide nanotubes for Na-ion batteries. ACS Appl. Mater. Interfaces 7, 1477-85 (2015)
[168] S.-Z. Huang, Y. Cai, J. Jin, Y. Li, X.-F. Zheng, H.-E. Wang, M. Wu, L.-H. Chen, and B.-L. Su, Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion batteries. J. Mater. Chem. A 2, 14099–14108, (2014)
[169] S. Hu, and X. Wang, Single-walled MoO3 nanotubes. J. Am. Chem. Soc. 130, 8126-8127 (2008)
[170] A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B. W. Arey, G. Li, S.-q. Liang, and J. Liu, Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 20, 9193–9199 (2010)
[171] L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, S. Zhao, and Y. Zhao, Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 10, 4750–4755 (2010)
[172] R. Liang, H. Cao, and D. Qian, MoO3 nanowires as electrochemical pseudocapacitor materials. Chem. Commun. 47, 10305-10307 (2011)
[173] M. Wang, and K. J. Koski, Reversible Chemochromic MoO3 nanoribbons through zerovalent metal intercalation. ACS Nano 9, 3226-3233 (2015)
[174] D. Su, and G. Wang, Single-Crystalline Bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218-11226 (2013)
[175] L. Cai, P. M. Rao, and X. Zheng, Morphology-controlled flame synthesis of single, branched, and flower-like alpha-MoO3 nanobelt arrays. Nano Lett. 11, 872-877 (2011)
[176] Y. Ke, X. Wen, D. Zhao, R. Che, Q. Xiong, and Y. Long, Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance. ACS Nano 11, 7542-7551 (2017)
[177] L. A. Riley, S.-H. Lee, L. Gedvilias, and A. C. Dillon, Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J. Power Sources 195, 588-592 (2010)
[178] L. Zhang, F. Xia, Z. Song, N. A. S. Webster, H. Luo, and Y. Gao, Synthesis and formation mechanism of VO2(A) nanoplates with intrinsic peroxidase-like activity. RSC Adv. 5, 61371-61379 (2015)
[179] J. Zhu, L. Cao, Y. Wu, Y. Gong, Z. Liu, H. E. Hoster, Y. Zhang, S. Zhang, S. Yang, Q. Yan, P. M. Ajayan, and R. Vajtai, Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett. 13, 5408-5413 (2013)
[180] A. Q. Pan, H. B. Wu, L. Zhang, and X. W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6, 1476 (2013)
[181] J. Ni, Y. Zhao, L. Li, and L. Mai, Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy 11, 129-135 (2015)
[182] A. Stevanovic, M. Buttner, Z. Zhang, and J. T. Yates, Jr., Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J. Am. Chem. Soc. 134, 324-32 (2012)
[183] M. R. Scherer, L. Li, P. M. Cunha, O. A. Scherman, and U. Steiner, Enhanced electrochromism in gyroid-structured vanadium pentoxide. Adv. Mater. 24, 1217-1221 (2012)
[184] L. Zheng, Y. Xu, D. Jin, and Y. Xie, Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem. Mater. 21, 5681-5690 (2009)
[185] J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Wang, Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties. Adv. Mater. 15, 1835-1840 (2003)
[186] Y.-L. Chan, S.-Y. Pung, and S. Sreekantan, Synthesis of V2O5 nanoflakes on PET fiber as visible-light-driven photocatalysts for degradation of RhB Dye. J. Cat. 370696, 1-7 (2014)
[187] W. Jin, S. Yan, L. An, W. Chen, S. Yang, C. Zhao, and Y. Dai, Enhancement of ethanol gas sensing response based on ordered V2O5 nanowire microyarns. Sens. Actuators B. 206, 284-290 (2015)
[188] G. Wang, X. Lu, Y. Ling, T. Zhai, H. Wang, Y. Tong, and Y. Li, LiCl/PVA Gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano 6, 10296-10302 (2012)
[189] J. N. Tiwari, R. N. Tiwari, and K. S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater Sci. 57, 724-803 (2012)
[190] J. Goldstein, J. I. Goldstein, Y. Goldshtain, D. E. Newbury, D. E, D. C. Joy, P. Echlin, C. E. Lyman, E. Lifshin, and L. Sawyer, Scanning Electron Microscopy and X-ray Microanalysis: Third Edition, Springer US, (2003)
[191] B. D. Cullity, and S. R. Stock, Elements of X-ray Diffraction, Pearson Education Limited, (2013)
[192] Z. L. Wang, New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497-1514 (2003)
[193] D. B. Williams, and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Springer, (2009)
[194] J. F. Moulder, and J. Chastain, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corporation, (1992)
[195] D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, John Wiley & Sons Ltd, (2002)
[196] D. F. Swinehart, The Beer-Lambert Law. J. Chem. Educ. 39, 333 (1962)
[197] J. Tauc, and A. Menth, States in the gap. J. Non-Cryst. Solids 8-10, 569-585 (1972)
[198] A. J. Bard, and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, (2000)
[199] Z. S. Wu, K. Parvez, X. Feng, and K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013)
[200] A. Sacco, Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable Sustainable Energy Rev. 79, 814-829 (2017)
[201] R. A. Patil, R. S. Devan, J.-H. Lin, Y. Liou, and Y.-R. Ma, An efficient methodology for measurement of the average electrical properties of single one-dimensional NiO nanorods. Sci. Rep. 3, 3070 (2013)
[202] M. Dieterle, and G. Mestl, Raman spectroscopy of molybdenum oxides. Phys. Chem. Chem. Phys. 4, 822-826 (2002)
[203] M. Dieterle, G. Weinberg, and G. Mestl, Raman spectroscopy of molybdenum oxides. Phys. Chem. Chem. Phys. 4, 812-821 (2002)
[204] M. Borovšak, P. Šutar, E. Goreshnik, and D. Mihailovic, Topotactic changes on η-Mo4O11 caused by biased atomic force microscope tip and cw-laser. Appl. Surf. Sci. 354, 256-259 (2015)
[205] M. E. Cura, X. W. Liu, U. Kanerva, S. Varjus, A. Kivioja, O. Söderberg, and S. P. Hannula, Friction behavior of alumina/molybdenum composites and formation of MoO3−x phase at 400°C. Tribol. Int. 87, 23-31 (2015)
[206] W. Lei, and L. Baowen, Phononics gets hot. Phys. World. 21, 27 (2008)
[207] A. A. Balandin, and D. L. Nika, Phononics in low-dimensional materials. Mater. Today 15, 266-275 (2012)
[208] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045-1066 (2012)
[209] M. Maldovan, Sound and heat revolutions in phononics. Nature 503, 209-17 (2013)
[210] A. Guerfi, R. Paynter, and L. H. Dao, Characterization and stability of electrochromic MoO3 thin films prepared by electrodeposition. J. Electrochem. Soc. 142, 3457-3464 (1995)
[211] C.-C. Hu, K.-H. Chang, M.-C. Lin, and Y.-T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano lett. 6, 2690-2695 (2006)
[212] L. Zheng, Y. Xu, D. Jin, and Y. Xie, Well-aligned molybdenum oxide nanorods on metal substrates: solution-based synthesis and their electrochemical capacitor application. J. Mater. Chem. 20, 7135-7143 (2010)
[213] I. Shakir, M. Shahid, H. W. Yang, and D. J. Kang, Structural and electrochemical characterization of α-MoO3 nanorod-based electrochemical energy storage devices. Electrochim. Acta 56, 376-380 (2010)
[214] R. A. Patil, C. P. Chang, R. S. Devan, Y. Liou, and Y. R. Ma, Impact of nanosize on supercapacitance: study of 1D nanorods and 2D thin-films of nickel oxide. ACS Appl. Mater. Interfaces 8, 9872-80 (2016)
[215] R. S. Devan, Y.-R. Ma, R. A. Patil, and S.-M. Lukas, Highly stable supercapacitive performance of one-dimensional (1D) brookite TiO2 nanoneedles. RSC Adv. 6, 62218-62225 (2016)
[216] Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, and D. Shen, Construction of hierarchical alpha-MnO2 nanowires@ultrathin delta-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 9050-8 (2016)
[217] V. Senthilkumar, Y. S. Kim, S. Chandrasekaran, B. Rajagopalan, E. J. Kim, and J. S. Chung, Comparative supercapacitance performance of CuO nanostructures for energy storage device applications. RSC Adv. 5, 20545-20553 (2015)
[218] L.-J. Bian, H.-L. He, and X.-X. Liu, Self-doped polyaniline/molybdenum oxide composite nanorods for supercapacitors. RSC Adv. 5, 75374-75379 (2015)
[219] D. H. Nagaraju, Q. Wang, P. Beaujuge, and H. N. Alshareef, Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2, 17146-17152 (2014)
[220] J. Qiu, Z. Yang, and Y. Li, N-doped carbon encapsulated ultrathin MoO3 nanosheets as superior anodes with high capacity and excellent rate capability for Li-ion batteries. J. Mater. Chem. A 3, 24245-24253 (2015)
[221] E. Barsoukov, and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, Wiley, (2005)
[222] A. M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G. Q. Lu, and Y. Chen, Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5. Chem. Mater. 22, 914-921 (2010)
[223] J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation. Science 339, 1402-1405 (2013)
[224] H. Wang, H. Yi, X. Chen, and X. Wang, One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J. Mater. Chem. A 2, 1165-1173 (2014)
[225] X. Xia, D. Chao, C. F. Ng, J. Lin, Z. Fan, H. Zhang, Z. X. Shen, and H. J. Fan, VO2 nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. Mater. Horiz. 2, 237-244 (2015)
[226] M. Sathiya, A. S. Prakash, K. Ramesha, J. M. Tarascon, and A. K. Shukla, V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 133, 16291-16299 (2011)
[227] S. K. Meher, P. Justin, and G. R. Rao, Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide. Electrochim. Acta 55, 8388-8396 (2010)
[228] R. B. Rakhi, D. H. Nagaraju, P. Beaujuge, and H. N. Alshareef, Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte. Electrochim. Acta 220, 601-608 (2016)
[229] J. Shao, X. Li, Q. Qu, and H. Zheng, One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors. J. Power Sources 219, 253-257 (2012)
[230] X. Pan, Y. Zhao, G. Ren, and Z. Fan, Highly conductive VO2 treated with hydrogen for supercapacitors. Chem. Commun. 49, 3943-5 (2013)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top