跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐志浩
研究生(外文):HSU, CHIH-HAO
論文名稱:Antacamphin M在人類臍靜脈內皮細胞藉由上調節LXR與Nrf2 路徑來減少LPS誘導的發炎反應
論文名稱(外文):Antcamphin M decreases LPS-induced inflammatory response via upregulation of the LXR and Nrf2 pathways in human umbilical vein endothelial cells
指導教授:張自忠李世裕李世裕引用關係
指導教授(外文):CHANG, TSU-CHUNGLEE, SHIH-YU
口試委員:張自忠、李世裕、周志中
口試委員(外文):CHANG, TSU-CHUNG、LEE, SHIH-YU、CHOU, TZ-CHONG
口試日期:2018-12-21
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:97
中文關鍵詞:牛樟芝發炎反應內皮細胞類鐸受體細胞黏附因子
外文關鍵詞:Antrodia cinnamomea myceliuminflammationendothelial cellToll-like receptorcell adhesion molecule
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Antacamphin M是一個從牛樟芝萃取出來的新化合物,而在我們過去的研究中也發現到,antacamphin M具有抗發炎的效果。然而它在內皮細胞的抗發炎效果仍未清楚。而本篇研究主旨是antacamphin M在HUVEC中由LPS刺激的發炎反應,所具有的抗發炎效果與機制。首先細胞在前30分鐘使用適當濃度的antacamphin M處理細胞,之後再用0.1 μg/ml的LPS刺激細胞。之後我們檢測了發炎的相關路徑。我們發現HUVEC並沒有明顯的死亡,並且antacamphin M能夠減少ICAM-1、VCAM-1與iNOS的蛋白量與cytokine及chemokine的表現量,但COX-2卻沒有明顯變化,並且LPS刺激的細胞內ROS的生成量也有所減少。除此之外,antacamphin M不只抑制了MAPK,NLRP3、NF-κB等等發炎路徑與黏附試驗,還顯著的提升了HO-1與LXR-α的蛋白表現。而當我們使用了siRNA去knock down掉Nrf2與LXR路徑後,我們發現這些保護性的效果都被抵銷了,之後我們也使用了co-IP確認它們之間的蛋白交互作用,發現在加入藥物後,LXR-α會大幅度的binding到NF-κB去抑制它。這些發現顯示了antacamphin M在LPS所誘導的血管傷害過程中,發揮了一個保護性的效果,也許未來能夠作為一個有潛能的藥物。
Antcamphin M, a new ergonoid from Antrodia cinnamomea mycelium, has anti-inflammatory activity in our previous studies. However, its effect on endothelial cells remains unclear. The study was designed to investigate the effects and mechanisms of antcamphin M on LPS-stimulated human umbilical vein endothelial cells (HUVECs). Cells were pretreated with the indicated concentrations of the antcamphin M 30 min prior to stimulation with 0.1 μg/ml lipopolysaccharide (LPS). The cell viability, and the inflammatory signaling pathways were then measured. We found that antcamphin M significantly diminished intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) along with the protein levels of inducible NO synthase (iNOS), but not cyclooxygenase 2 (COX2). In addition, antcamphin M not only inhibited activations of the mitogen-activated protein kinase (MAPK), AKT, NOD-like receptor protein 3 (NLRP3) inflammasome, and NF-κB signaling pathways, but also significantly increased the protein levels of heme oxygenase-1 (HO-1) and liver X receptor (LXR). In adhesion assay, we found that antcamphin M significantly decreased THP-1 cell adhered to the HUVECs. However, these protective effects were abolished while silencing either Nrf2 or LXR gene expression. We also found that antcamphin M dramatically increased the protein-protein interaction between LXR and NF-κB. These findings indicate that antacamphin M exerted a protective effect on LPS-induced vascular injury process and might be a potential agent against inflammatory response in blood vessels.
目錄
目錄 I
圖目錄 V
縮寫表 VII
中文摘要 IX
Abstract X
第一章 緒言 1
第一節、發炎反應與血管發炎(Inflammatory response and vascular inflammation) 1
第二節、內皮細胞 (endothelial cells) 2
第三節、細胞黏附因子(cell adhesion molecules, CAM) 3
第四節、脂多醣 (lipopolysaccharide, LPS) 4
第五節、類鐸受體 (Toll-like receptors, TLRs) 5
一、類鐸受體 (Toll-like receptors, TLRs) 5
二、第四類鐸受體 (Toll-like receptor 4, TLR4) 5
第六節、有絲分裂原活化蛋白質激酶(mitogen-activated protein kinase, MAPK) 6
第七節、核因子κB(nuclear transcription factor kappa B, NF-κB) 7
第八節、核因子紅細胞2相關因子(Nuclear factor erythroid-2-related factor, Nrf2) 8
第九節、血基質氧化酶(Heme oxygenase, HO) 8
第十節、肝X受體(liver X receptor) 9
第十一節、發炎體(Inflammasome) 10
第十二節、細胞自噬(autophagy) 11
第十三節、牛樟芝(Antrodia cinnamomea mycelium) 11
第十四節、研究動機 12
第二章 材料與方法 18
第一節、主要儀器及藥品試劑 18
一、儀器與器材 18
二、藥品試劑 18
三、抗體 20
四、antcamphin M來源 21
第二節、方法 21
一、HUVEC細胞培養 (Cell culture) American Type Culture Collection (ATCC; Manassas, VA, USA) 21
二、蛋白質濃度測定 (Protein assay) (Thermo, N. Meridian Rd, Rockford, U.S.A)23
三、西方墨點法 (Western blotting) 24
四、CCK8細胞生長率偵測試驗 Cell Counting Kit-8 reagent (Dojindo, Japan) 31
五、細胞激素分析 (ELISA Kit;(R&D Systems, Minneapolis, MN, USA)) 31
六、核質分離製備(Nuclear/Cytosol Fractionation Kit;BioVision)(BioVision, Milpitas, MN, USA) 32
七、ROS活性氧檢測 Reactive Oxygen Species (ROS) Detection (Cell Biolabs, Inc. Arjons Drive San Diego, USA) 34
八、細胞黏附檢測 Cell adhesion assay (Molecular Probes, Eugene, Oregon, USA)34
九、即時聚合酶鏈式反應(Quantitative PCR) 35
十、Gene knock down (siRNA) (Santa Cruz Biotechnology, Dallas, Texas. USA)36
十一、免疫共沉澱法 (Co-Immunoprecipitation) (Millipore Corporation, Burlington, Massachusetts. U.S.A) 37
第三章 結果 39
第一節、antcamphin M對於HUVECs的細胞毒性測試 39
第二節、antcamphin M對於HUVECs的iNOS與COX-2和adhesion molecules的表現 39
第三節、antcamphin M對於cytokine和chemokine的表現 40
第四節、antcamphin M對於MAPK路徑之表現 41
第五節、antcamphin M對於NF-κB路徑之表現 42
第六節、antcamphin M對於TLR4接受器與myD88蛋白之表現 43
第七節、antcamphin M對於Nrf2、HO-1蛋白之表現與ROS生成的影響 44
第八節、antcamphin M對於肝X受體蛋白與ABCA1、ABCG1 mRNA表現 45
第九節、antcamphin M對於單核球黏附之作用 46
第十節、利用siRNA研究抗發炎的機制 47
第十一節、antcamphin M對於發炎體(inflammasome)之表現 48
第十二節、antcamphin M對自噬作用(autophagy)之表現 49
第十三節、antcamphin M在Nrf2、LXR與NF-κB間protein-protein interaction 50
第十四節、antcamphin M在PKC ζ和PKC β之表現 51
第四章 討論 52
第一節、牛樟芝 52
一、牛樟芝之生物活性化合物 52
二、牛樟芝活性化合物antcamphin M之抗發炎路徑活化 52
三、與antcamphin M類似結構之抗發炎藥物 52
第二節、MAPK和NF-κB與發炎反應之相關性 53
第三節、ICAM-1、VCAM-1與內皮細胞發炎之關係 54
第四節、Nrf2和LXR在內皮之作用 54
第五節、發炎體的抑制、自噬作用與內皮細胞相關性 57
第六節、腸道菌群與動脈硬化之關係 58
第五章 結論 59
第六章 參考文獻 76



圖目錄
圖一、內皮與巨噬細胞的交互作用 13
圖二、HUVEC 人類臍靜脈內皮細胞 13
圖三、脂多醣 (lipopolysaccharide, LPS)示意圖 14
圖四、細胞黏附因子(cell adhesion molecules, CAM)示意圖 14
圖五、細胞黏附過程示意圖 15
圖六、類鐸受體 (TLRs)引起發炎反應的主要路徑 15
圖七、Nrf2-HO-1路徑 16
圖八、發炎體(Inflammasome)路徑 16
圖九、自噬作用(Autophagy) 17
Figure 1. Effect of antcamphin M on HUVECs cell viability 60
Figure 2. Effect of antcamphin M on ICAM-1, VCAM-1, iNOS, and COX-2 in LPS-stimulated cells 61
Figure 3. Effect of antcamphin M on LPS-triggered cytokines and chemokine production in HUVEC 62
Figure 4. Effect of antcamphin M on the MAPK signaling pathways in LPS-stimulated cells 63
Figure 5. Effect of antcamphin M on the NF-κB signaling pathways in LPS-stimulated cells 64
Figure 6. Effect of antcamphin M on TLR4, MyD88 in LPS-stimulated cells 65
Figure 7. Effect of antcamphin M on Nrf2, HO-1 in LPS-stimulated cells 66
Figure 8. Effect of antcamphin M on LXR-α and ABCA1, ABCG1 in LPS-stimulated cells 67
Figure 9. Effect of antcamphin M on monocyte adhesion to endothelial cells 68
Figure 10. Effect of siRNA on adhesion molecule 69
Figure 11. Effect of antcamphin M on the NLRP3 inflammasome in LPS-stimulated cells 71
Figure 12. Effect of antcamphin M on autophagy in LPS-stimulated cells. 72
Figure 13. Effect of antcamphin M on LXR-α, Nrf2 and NF-κB protein-protein interaction 73
Figure 14. Effect of antcamphin M on PKC ζ and PKC β 74
Figure 15. Proposed mechanisms of antcamphin M on LPS-induced inflammatory response in endothelial cells 75




第六章 參考文獻
1. Wang P, Qiao Q, Li J, Wang W, Yao LP, Fu YJ. Inhibitory effects of geraniin on LPS-induced inflammation via regulating NF-kappaB and Nrf2 pathways in RAW 264.7 cells. Chem Biol Interact 2016;253:134-42.
2. Tao J, Wei Y, Hu T. Flavonoids of Polygonum hydropiper L. attenuates lipopolysaccharide-induced inflammatory injury via suppressing phosphorylation in MAPKs pathways. BMC Complement Altern Med 2016;16:25-27.
3.Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest 2006;86:9-22.
4. Song L, Kang C, Sun Y, Huang W, Liu W, Qian Z. Crocetin Inhibits Lipopolysaccharide-Induced Inflammatory Response in Human Umbilical Vein Endothelial Cells. Cell Physiol Biochem 2016;40:443-52.
5. Yang X, Chang Y, Wei W. Endothelial Dysfunction and Inflammation: Immunity in Rheumatoid Arthritis. Mediators Inflamm 2016;16:681301-6.
6. Kalucka J, Bierhansl L, Wielockx B, Carmeliet P, Eelen G. Interaction of endothelial cells with macrophages-linking molecular and metabolic signaling. Pflugers Arch 2017;469:473-83.
7. Michiels C. Endothelial cell functions. J Cell Physiol 2003;196:430-43.
8. Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2012;2:a00642-9.
9.Yang J, Han Y, Chen C, et al. EGCG attenuates high glucose-induced endothelial cell inflammation by suppression of PKC and NF-kappaB signaling in human umbilical vein endothelial cells. Life Sci 2013;92:589-97.
10.Liu NN, Zhao N, Cai N. The effect and mechanism of celecoxib in hypoxia-induced survivin up-regulation in HUVECs. Cell Physiol Biochem 2015;37:991-1001.
11.Zhong X, Drgonova J, Li CY, Uhl GR. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes. Ann N Y Acad Sci 2015;1349:83-95.
12.Barreiro O, Yanez-Mo M, Serrador JM, et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 2002;157:1233-45.
13.Wai Wong C, Dye DE, Coombe DR. The role of immunoglobulin superfamily cell adhesion molecules in cancer metastasis. Int J Cell Biol 2012;12:340296-304.
14.Falati S, Patil S, Gross PL, et al. Platelet PECAM-1 inhibits thrombus formation in vivo. Blood 2006;107:535-41.
15.Sarecka-Hujar B, Zak I, Krauze J. Interactions between rs5498 polymorphism in the ICAM1 gene and traditional risk factors influence susceptibility to coronary artery disease. Clin Exp Med 2009;9:117-24.
16.Peng XX, Zhang SH, Wang XL, et al. Panax Notoginseng flower saponins (PNFS) inhibit LPS-stimulated NO overproduction and iNOS gene overexpression via the suppression of TLR4-mediated MAPK/NF-kappa B signaling pathways in RAW264.7 macrophages. Chin Med 2015;10:15.
17.Wu J, Li X, Huang L, et al. HSPA12B inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells. J Cell Mol Med 2015;19:544-54.
18.Mako V, Czucz J, Weiszhar Z, et al. Proinflammatory activation pattern of human umbilical vein endothelial cells induced by IL-1beta, TNF-alpha, and LPS. Cytometry A 2010;77:962-70.
19.Takeda K, Akira S. Toll-like receptors. Curr Protoc Immunol 2015;109: 14.12.1-14.12.10.
20.Wang W, Deng M, Liu X, Ai W, Tang Q, Hu J. TLR4 activation induces nontolerant inflammatory response in endothelial cells. Inflammation 2011;34:509-18.
21.Hijiya N, Miyake K, Akashi S, Matsuura K, Higuchi Y, Yamamoto S. Possible involvement of toll-like receptor 4 in endothelial cell activation of larger vessels in response to lipopolysaccharide. Pathobiology 2002;70:18-25.
22.Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008;42:145-51.
23.Yoon YK, Woo HJ, Kim Y. Orostachys japonicus Inhibits Expression of the TLR4, NOD2, iNOS, and COX-2 Genes in LPS-Stimulated Human PMA-Differentiated THP-1 Cells by Inhibiting NF-kappaB and MAPK Activation. Evid Based Complement Alternat Med 2015;15:68201-9.
24.Liang Q, Yu F, Cui X, et al. Sparstolonin B suppresses lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells. Arch Pharm Res 2013;36:890-6.
25.Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011;75:50-83.
26.Chen G, Zhao J, Yin Y, et al. C-type natriuretic peptide attenuates LPS-induced endothelial activation: involvement of p38, Akt, and NF-kappaB pathways. Amino Acids 2014;46:2653-63.
27.Wang Y, Wang F, Sun T, et al. Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos. Dev Dyn 2004;231:72-87.
28.Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009;1:a001651-5.
29.Lopez-Bojorquez LN, Arechavaleta-Velasco F, Vadillo-Ortega F, Montes-Sanchez D, Ventura-Gallegos JL, Zentella-Dehesa A. NF-kappaB translocation and endothelial cell activation is potentiated by macrophage-released signals co-secreted with TNF-alpha and IL-1beta. Inflamm Res 2004;53:567-75.
30.Reddy DB, Reddanna P. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Biochem Biophys Res Commun 2009;381:112-7.
31.Zhong L, Simard MJ, Huot J. Endothelial microRNAs regulating the NF-kappaB pathway and cell adhesion molecules during inflammation. FASEB J 2018;32:4070-84.
32.Lin Q, Qin X, Shi M, et al. Schisandrin B inhibits LPS-induced inflammatory response in human umbilical vein endothelial cells by activating Nrf2. Int Immunopharmacol 2017;49:142-7.
33.Yang D, Xiao CX, Su ZH, et al. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-alpha-mediated inflammation response in endothelial cells by blocking the MAPK/NF-kappaB and activating Nrf2/HO-1. Phytomedicine 2017;32:15-23.
34.Choi ES, Lee YJ, Seo CS, et al. Vascular Protective Role of Samul-Tang in HUVECs: Involvement of Nrf2/HO-1 and NO. Evid Based Complement Alternat Med 2016;16:9580234-247.
35.Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol 2015;225:R83-99.
36.Churchill E, Budas G, Vallentin A, Koyanagi T, Mochly-Rosen D. PKC isozymes in chronic cardiac disease: possible therapeutic targets? Annu Rev Pharmacol Toxicol 2008;48:569-99.
37.Hung CH, Chan SH, Chu PM, Tsai KL. Docetaxel Facilitates Endothelial Dysfunction through Oxidative Stress via Modulation of Protein Kinase C Beta: The Protective Effects of Sotrastaurin. Toxicol Sci 2015;145:59-67.
38.Taha H, Skrzypek K, Guevara I, et al. Role of heme oxygenase-1 in human endothelial cells: lesson from the promoter allelic variants. Arterioscler Thromb Vasc Biol 2010;30:1634-41.
39.Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 2010;80:1895-903.
40.Zhang M, Pan H, Xu Y, Wang X, Qiu Z, Jiang L. Allicin Decreases Lipopolysaccharide-Induced Oxidative Stress and Inflammation in Human Umbilical Vein Endothelial Cells through Suppression of Mitochondrial Dysfunction and Activation of Nrf2. Cell Physiol Biochem 2017;41:2255-67.
41.Jakobsson T, Treuter E, Gustafsson JA, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 2012;33:394-404.
42.Kuipers I, van der Harst P, Kuipers F, et al. Activation of liver X receptor-alpha reduces activation of the renal and cardiac renin-angiotensin-aldosterone system. Lab Invest 2010;90:630-6.
43.Li Y, Zhang XS, Yu JL. Acanthoic acid inhibits LPS-induced inflammatory response by activating LXRalpha in human umbilical vein endothelial cells. Int Immunopharmacol 2016;32:111-5.
44.Spillmann F, Van Linthout S, Miteva K, et al. LXR agonism improves TNF-alpha-induced endothelial dysfunction in the absence of its cholesterol-modulating effects. Atherosclerosis 2014;232:1-9.
45.Hayashi T, Kotani H, Yamaguchi T, et al. Endothelial cellular senescence is inhibited by liver X receptor activation with an additional mechanism for its atheroprotection in diabetes. Proc Natl Acad Sci U S A 2014;111:1168-73.
46.Xiang P, Chen T, Mou Y, et al. NZ suppresses TLR4/NF-kappaB signalings and NLRP3 inflammasome activation in LPS-induced RAW264.7 macrophages. Inflamm Res 2015;64:799-808.
47.Hutton HL, Ooi JD, Holdsworth SR, Kitching AR. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology (Carlton) 2016;21:736-44.
48.Ka SM, Kuoping Chao L, Lin JC, et al. A low toxicity synthetic cinnamaldehyde derivative ameliorates renal inflammation in mice by inhibiting NLRP3 inflammasome and its related signaling pathways. Free Radic Biol Med 2016;91:10-24.
49.Yang H, Xiao L, Yuan Y, et al. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochem Pharmacol 2014;92:599-606.
50.Li Y, Yang X, He Y, et al. Negative regulation of NLRP3 inflammasome by SIRT1 in vascular endothelial cells. Immunobiology 2017;222:552-61.
51.Jiang F. Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol 2016;43:1021-8.
52.Han J, Pan XY, Xu Y, et al. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 2012;8:812-25.
53.Zhang D, Zhou J, Ye LC, et al. Autophagy maintains the integrity of endothelial barrier in LPS-induced lung injury. J Cell Physiol 2018;233:688-98.
54.Vion AC, Kheloufi M, Hammoutene A, et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proc Natl Acad Sci U S A 2017;114:E8675-84.
55.Geethangili M, Tzeng YM. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evid Based Complement Alternat Med 2011;11:2126-41.
56.Yen IC, Shi LS, Chung MC, Ahmetaj-Shala B, Chang TC, Lee SY. Antrolone, a Novel Benzoid Derived from Antrodia cinnamomea, Inhibits the LPS-Induced Inflammatory Response in RAW264.7 Macrophage Cells by Balancing the NF-κB and Nrf2 Pathways. Am J Chin Med 2018;46:1297-313.
57.Chiu CH, Peng CC, Ker YB, et al. Physicochemical characteristics and anti-inflammatory activities of antrodan, a novel glycoprotein isolated from Antrodia cinnamomea mycelia. Molecules 2013;19:22-40.
58.Ikeda Y, Murakami A, Ohigashi H. Ursolic acid: an anti- and pro-inflammatory triterpenoid. Mol Nutr Food Res 2008;52:26-42.
59.Checker R, Sandur SK, Sharma D, et al. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-kappaB, AP-1 and NF-AT. PLoS One 2012;7:e31318.
60.Martin SA, Souder DC, Miller KN, et al. GSK3beta Regulates Brain Energy Metabolism. Cell Rep 2018;23:1922-31.
61.Yao J, Zou Z, Wang X, Ji X, Yang J. Pinoresinol Diglucoside Alleviates oxLDL-Induced Dysfunction in Human Umbilical Vein Endothelial Cells. Evid Based Complement Alternat Med 2016;16:312451-9.
62.Hassanian SM, Dinarvand P, Rezaie AR. Adenosine regulates the proinflammatory signaling function of thrombin in endothelial cells. J Cell Physiol 2014;229:1292-300.
63.Meyer dos Santos S, Klinkhardt U, Schneppenheim R, Harder S. Using ImageJ for the quantitative analysis of flow-based adhesion assays in real-time under physiologic flow conditions. Platelets 2010;21:60-65.
64.He XW, Yu D, Li WL, et al. Anti-atherosclerotic potential of baicalin mediated by promoting cholesterol efflux from macrophages via the PPARgamma-LXRalpha-ABCA1/ABCG1 pathway. Biomed Pharmacother 2016;83:257-64.
65.Pratesi F, Tommasi C, Anzilotti C, et al. Antibodies to a new viral citrullinated peptide, VCP2: fine specificity and correlation with anti-cyclic citrullinated peptide (CCP) and anti-VCP1 antibodies. Clin Exp Immunol 2011;164:337-45.
66.Ahmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 2017;1863:585-97.
67.Bi X, Song J, Gao J, et al. Activation of liver X receptor attenuates lysophosphatidylcholine-induced IL-8 expression in endothelial cells via the NF-kappaB pathway and SUMOylation. J Cell Mol Med 2016;20:2249-58.
68.Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem Soc Trans 2015;43:621-6.
69.Huang Y, Yan L, Rong S, Haller H, Kirch T. TNF-alpha induces endothelial dysfunction via PKC-zeta-dependent NADPH oxidase activation. J Huazhong Univ Sci Technolog Med Sci 2012;32:642-7.
70.Li L, Hu J, He T, et al. P38/MAPK contributes to endothelial barrier dysfunction via MAP4 phosphorylation-dependent microtubule disassembly in inflammation-induced acute lung injury. Sci Rep 2015;5:88-95.
71.Dragoni S, Hudson N, Kenny BA, et al. Endothelial MAPKs Direct ICAM-1 Signaling to Divergent Inflammatory Functions. J Immunol 2017;198:4074-85.
72.Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011;1813:878-88.
73.Sha X, Meng S, Li X, et al. Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway. J Biol Chem 2015;290:19307-18.
74.Zhou Q, Han X, Li R, et al. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. Phytomedicine 2018;51:171-80.
75.Videm V, Albrigtsen M. Soluble ICAM-1 and VCAM-1 as markers of endothelial activation. Scand J Immunol 2008;67:523-31.
76.Lin HC, Li CC, Yang YC, et al. Andrographis paniculata diterpenoids and ethanolic extract inhibit TNFalpha-induced ICAM-1 expression in EA.hy926 cells. Phytomedicine 2019;52:157-67.
77.Chen XL, Dodd G, Thomas S, et al. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol 2006;290:H1862-70.
78.Zakkar M, Van der Heiden K, Luong le A, et al. Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol 2009;29:1851-7.
79.Sun CY, Xu LQ, Zhang ZB, et al. Protective effects of pogostone against LPS-induced acute lung injury in mice via regulation of Keap1-Nrf2/NF-kappaB signaling pathways. Int Immunopharmacol 2016;32:55-61.
80.To C, Ringelberg CS, Royce DB, et al. Dimethyl fumarate and the oleanane triterpenoids, CDDO-imidazolide and CDDO-methyl ester, both activate the Nrf2 pathway but have opposite effects in the A/J model of lung carcinogenesis. Carcinogenesis 2015;36:769-81.
81.Pareek TK, Belkadi A, Kesavapany S, et al. Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis. Sci Rep 2011;1:201-5.
82.Calkin AC, Tontonoz P. Liver x receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol 2010;30:1513-8.
83.Verschuren L, de Vries-van der Weij J, Zadelaar S, Kleemann R, Kooistra T. LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in apoE*3Leiden mice: time course and mechanisms. J Lipid Res 2009;50:301-11.
84.Bradley MN, Hong C, Chen M, et al. Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest 2007;117:2337-46.
85.Chen Y, Li X, Boini KM, et al. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. Biochim Biophys Acta 2015;1853:396-408.
86.Chen Z, Martin M, Li Z, Shyy JY. Endothelial dysfunction: the role of sterol regulatory element-binding protein-induced NOD-like receptor family pyrin domain-containing protein 3 inflammasome in atherosclerosis. Curr Opin Lipidol 2014;25:339-49.
87.Hou Y, Wang Y, He Q, et al. Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res 2018;336:32-9.
88.Lebeaupin C, Vallee D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018;69:927-47.
89.Waschke J, Golenhofen N, Kurzchalia TV, Drenckhahn D. Protein kinase C-mediated endothelial barrier regulation is caveolin-1-dependent. Histochem Cell Biol 2006;126:17-26.
90.Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol 2005;77:487-95.
91.Shio MT, Christian JG, Jung JY, Chang KP, Olivier M. PKC/ROS-Mediated NLRP3 Inflammasome Activation Is Attenuated by Leishmania Zinc-Metalloprotease during Infection. PLoS Negl Trop Dis 2015;9:e000386-8.
92.Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol 2004;12:562-8.
93.Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57:1470-81.


電子全文 電子全文(網際網路公開日期:20240122)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊