跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉秉誠
研究生(外文):LIU, BING-CHENG
論文名稱:探討 ZFP36L1 鋅指蛋白抗 A 型流感病毒的作用機制
論文名稱(外文):The study of antiviral mechanism of zinc finger protein ZFP36L1 against influenza A virus
指導教授:黃志恆林仁傑林仁傑引用關係
指導教授(外文):HUANG, CHIH-HENGLIN, REN-JYE
口試委員:黃志恆林仁傑廖經倫林宜玲
口試委員(外文):HUANG, CHIH-HENGLIN, REN-JYELIAO,JING-LUNLIN,YI-LING
口試日期:2018-05-11
學位類別:碩士
校院名稱:國防醫學院
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:55
中文關鍵詞:A 型流感病毒鋅指蛋白
外文關鍵詞:Influenza A virusZinc finger protein 36, CCCH type-like 1 (ZFP36L1)RNA-binding protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
ZFP36L1蛋白是CCCH型鋅指蛋白中,tristetraprolin(TTP,也稱為Zfp36)家族蛋白的成員,其蛋白功能為,可以結合mRNA的3'非轉譯區(UTR)中,AU-rich elements (ARE),誘導mRNA的去腺苷酸化(deadenylation)和降解(degradation)。從剔除ZFP36家族蛋白的小鼠研究中,已經證明了ZFP36家族成員,在發炎反應中的生物學功能。此外,最近的研究證實,有幾種CCCH型鋅指蛋白(如TTP,ZAP和MCPIP)會在細胞抗病毒反應中,發揮重要作用,其機制包括誘導病毒RNA降解,抑制病毒RNA轉譯和增強抗病毒信號傳導。在此論文研究中,我們發現細胞感染A型流感病毒(IAV)時,ZFP36L1可以展現出抗病毒的功能。研究結果顯示,在過量表現ZFP36L1蛋白時,在IAV感染A549細胞,或T-REx 293細胞轉染個別的IAV質體,皆發現有明顯抑制NS,HA和M病毒RNA片段的病毒蛋白表現,包括HA,M1,M2,NS1和NS2病毒蛋白。特別的是,細胞在過量表現ZFP36L1時,會抑制M1,NS1和HA蛋白質的表現,但並不干擾病毒mRNA的表現。ZFP36L1的兩個鋅指結構區域的點突變(C135R-C173R突變),幾乎阻斷了ZFP36L1抗IAV感染的抗病毒活性,說明了鋅指結構區域是ZFP36L1抗A型流感病毒不可或缺。此外,我們證明A549細胞ZFP36L1蛋白的表現,是由IAV感染誘導的,並且發現knockdown ZFP36L1蛋白,會增強IAV在細胞內的複製。在此論文研究中,我們第一次發現人類ZFP36L1可以通過,抑制特定IAV病毒蛋白的轉譯,進而阻斷病毒的複製,來達到抗A型流感病毒的效果。

ABSTRACT
The ZFP36L1 protein is a member of the tristetraprolin (TTP, also known as Zfp36) family of CCCH tandem zinc finger proteins which can bind to AU-rich elements (AREs) in the 3’-untranslated region (UTR) of target mRNAs and trigger their deadenylation and degradation. Studies in knockout mice have demonstrated the biological roles for TTP family members in inflammation. Moreover, recent studies suggested that several CCCH-zinc finger proteins, such as TTP, ZAP, and MCPIP, may play vital role in antiviral responses, with mechanisms including degradation of viral RNA, repression of viral RNA translation, and enhancing antiviral signaling. In this study, we found that ZFP36L1 can exhibit potent antiviral effect against influenza A virus (IAV) infection. It was also shown that ZFP36L1 overexpression in IAV-infected A549 cells and T-REx 293 cells transfected with individual IAV constructs has an obvious effect on the NS, HA and M IAV RNA segments and subsequently block the expression and function and of IAV viral proteins, including HA、M1、M2、NS1 and NS2 proteins. Interestingly, levels of M1, NS1 and HA proteins, but not mRNA levels, were reduced by ZFP36L1 overexpression in these cells. Mutations at the both of the CCCH-type zinc finger domains of ZFP36L1 (C135R-C173R mutant) almost abolished the antiviral activity of ZFP36L1 against IAV infection. Moreover, we demonstrated that ZFP36L1 expression was induced by IAV infection in A549 cells, and knockdown of ZFP36L1increased IAV replication. Here, it is the first time, we found that human ZFP36L1 can exhibit potent antiviral activity against influenza A viruses by blocking replication through translational repression of specific viral proteins.
中文摘要 ........................................I
ABSTRACT........................................II
目錄............................................III
圖目錄...........................................VI

第一章 緒論 (Introduciton) .......................1

第二章 材料與方法 (Materials and methods)..........9

第三章 結果 (Results).............................19

第四章 討論 (Discussion)..........................25

第五章 參考文獻 (References)......................30

第六章 目次圖表 (Figures list)....................39


參考文獻 (References)
1.De Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TNB, Hoang DM, Chau NVV, Khanh TH, Dong VC. (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Medicine 12: 1203-1207.
2.Loo YM, Gale M. (2007) Influenza: Fatal immunity and the 1918 virus. Nature 445: 267-268.
3.Hilleman MR. (2002) Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine 20: 3068-3087.
4.Neumann G, Noda T, Kawaoka Y. (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459: 931-939.
5.Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solórzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P. (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310: 77-80.
6.Lamb, R.A. and Krug, R.M. (2001) Orthomyxoviridae: The Viruses and Their Replication. In: Knipe, D.M., Howley, P.M. and Griffin, D.E., Eds., Fields Virology, 4th Edition, Lippincott Williams & Wilkins, Philadelphia, 1487-1531.
7.Iwasaki A, Pillai PS. (2014) Innate immunity to influenza virus infection. Nature Reviews Immunology 14: 315-328.
8.R. J. Webby, R. G. Webster. (2003) Are we ready for pandemic influenza? Science 302, 1519.
9.Shaw, M.L. & Palese, Peter. (2007) Orthomyxoviridae: The viruses and their replication. Fields Virology. 1647-1689.
10.Zebedee SL, Lamb RA. (1988) Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 2762-72.
11.Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, et al. (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 1306–12.
12.Hatta M, Kawaoka Y. (2003) The NB protein of influenza B virus is not necessary for virus replication in vitro. J Virol 6050–4.
13.Lamb RA, Lai CJ, Choppin PW. (1981) Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for over- lapping proteins. Proc Natl Acad Sci USA 4170-4.
14.Dauber B, Heins G, Wolff T. (2004) The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction. J Virol 1865–72.
15.Garcia-Sastre A. (2001) Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 375–84.
16.Kochs G, Garcia-Sastre A, Martinez-Sobrido L. (2007) Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 7011–21.
17.Briedis DJ, Lamb RA. (1982) Influenza B virus genome: sequences and structural organization of RNA segment 8 and the mRNAs coding for the NS1 and NS2 proteins. J Virol 186–93.
18.Lamb RA, Choppin PW, Chanock RM, Lai CJ. (1980) Mapping of the two overlapping genes for polypeptides NS1 and NS2 on RNA segment 8 of influenza virus genome. Proc Natl Acad Sci USA 1857–61.
19.Baudin F, Bach C, Cusack S, Ruigrok RW. Structure of influenza virus RNP. I. (1994) Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J 3158–65.
20.Compans RW, Content J, Duesberg PH. (1972) Structure of the ribonucleoprotein of influenza virus. J Virol 795–800.
21.Murti KG, Webster RG, Jones IM. (1988) Localization of RNA polymerases on influenza viral ribonucleoproteins by immunogold labeling. Virology 562–6.
22.Nicole M. Bouvier, Peter Palese (2008) The biology of influenza viruses. Vaccine 26S D49–D53.
23.R. Wagner, M. Matrosovich, H. D. Klenk. (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12, 159-166.
24.L. H. Pinto, R. A. Lamb. (2006) The M2 proton channels of influenza A and B viruses. J Biol Chem 281, 8997-9000
25.J. R. Schnell, J. J. Chou. (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591-595
26.E. Fodor, B. L. Seong, G. G. Brownlee. (1993) Photochemical cross-linking of influenza A polymerase to its virion RNA promoter defines a polymerase binding site at residues 9 to 12 of the promoter. The Journal of general virology 74 ( Pt 7), 1327.
27.A. Dias, D. Bouvier, T. Crepin, A. A. McCarthy, D. J. Hart, F. Baudin, S. Cusack, R. W. Ruigrok. (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458, 914-918.
28.Honda, K. Mizumoto, A. Ishihama. (2002) Minimum molecular architectures for transcription and replication of the influenza virus. Proc Natl Acad Sci U S A 99, 13166-13171.
29.G. Neumann, T. Noda, Y. Kawaoka. (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459, 931-939.
30.Ciais D, Cherradi N, Feige JJ. (2013)Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cellular and molecular life sciences : CMLS 70:2031-44.
31.Hall TM. (2005)Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15:367-373.
32.Hayakawa. (2011) ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat. Immunol. 12, 37-44 .
33.Bick MJ, Carroll JWN, Gao G, Goff SP, Rice CM, MacDonald MR. (2003) Expression of the Zinc-Finger Antiviral Protein Inhibits Alphavirus Replication. Journal of Virology 77:11555-11562.
34.Muller S, Moller P, Bick MJ, Wurr S, Becker S, Gunther S, Kummerer BM. (2007) Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 81:2391-2400.
35.Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y, Sun J, Wu L, Zheng YT, Gao G. (2011) Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci USA 108:15834-15839.
36.Lin, R.J. et al. (2013) MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res. 41, 3314-3326.
37.Lin, R.J. et al. (2014) MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. J. Immunol. 193, 4159-4168.
38.Maeda M, et al. (2006) Tristetraprolin inhibits HIV-1 production by binding to genomic RNA. Microbes Infect. 8, 2647-2656.
39.Atasheva S, Frolova EI, Frolov I. (2014) Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol 88:2116-2130.
40.Welsby I, Hutin D, Gueydan C, Kruys V, Rongvaux A, Leo O. (2014) PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation. J Biol Chem 289:26642-26657.
41.Sperandio, S. et al. (2015) TOE1 is an inhibitor of HIV-1 replication with cell-penetrating capability. Proc. Natl. Acad. Sci. USA. 112, E3392-3401.
42.Blackshear PJ. (2002) Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans 30:945-952.
43.Fu M, Blackshear PJ. (2017) RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat Rev Immunol 17:130-143.
44.Phillips RS, Ramos SB, Blackshear PJ. (2002) Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. The Journal of biological chemistry 277:11606-13.
45.Kalderon D, Roberts BL, Richardson WD, Smith AE. (1984) A short amino acid sequence able to specify nuclear location. Cell. 39 (3 Pt 2): 499–509.
46.Lai WS, Carballo E, Thorn JM, Kennington EA, Blackshear PJ. (2000) Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 275:17827-17837.
47.Sanduja S, Blanco FF, Dixon DA. (2011) The roles of TTP and BRF proteins in regulated mRNA decay. Wiley interdisciplinary reviews RNA 2:42-57.
48.Lykke-Andersen J, Wagner E. (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes & Development 19:351-361.
49.Tseng KY, Chen YH, Lin S. (2017) Zinc finger protein ZFP36L1 promotes osteoblastic differentiation but represses adipogenic differentiation of mouse multipotent cells. Oncotarget. 28:20588-20601.
50.Hodson DJ.Nat Immunol. (2010) Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Aug;11:717-24.
51.W. S. Lai, E. Carballo, J. M. Thorn, E. A. Kennington, and P. J. Blackshear. (2000) Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to AU-rich elements and destabilization of mRNA. The Journal of Biological Chemistry, vol. 275, no. 23, pp.17827–17837.
52.W. S. Lai and P. J. Blackshear. (2001) Interactions of CCCH zinc finger proteins with mRNA. Tristetraprolin-mediated AU- rich element-dependent mRNA degradation can occur in the absence of a poly(A) tail. The Journal of Biological Chemistry, vol. 276, no. 25, pp. 23144–23154.
53.G. Stoecklin, M. Colombi, I. Raineri, et al. (2002) Functional cloning of BRF1 a regulator of ARE-dependent mRNA turnover. The EMBO Journal, vol. 21, no. 17, pp. 4709–4718.
54.D. Ciais, N. Cherradi, S. Bailly, et al. (2004) Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b. Oncogene, vol. 23, no. 53, pp. 8673–8680.
55.S. E. Bell, M. J. Sanchez, O. Spasic-Boskovic, et al. (2006) The RNA binding protein Zfp36l1 is required for normal vascularisation and post-transcriptionally regulates VEGF expression. Developmental Dynamics, vol. 235, no. 11, pp. 3144–3155.
56.Guo, X., Ma, J., Sun, J., Gao, G. (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc. Natl. Acad. Sci. USA. 104, 151-156.
57.Zhu, Y., Wang, X., Goff, S.P., Gao, G. (2012) Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J. 31, 4236-4246.
58.Liu, S. et al. (2013) MCPIP1 restricts HIV infection and is rapidly degraded in activated CD4+ T cells. Proc. Natl. Acad. Sci. USA. 110, 19083-19088.
59.Huprikar J, Rabinowitz S. (1980) A simplified plaque assay for influenza viruses in Madin-Darby kidney (MDCK) cells. J Virol Methods. 1(2):117-20.
60.Bick MJ, et al. (2003) Expression of the zinc-finger antiviral protein inhibits alphavirus replication. Journal of virology.77:11555–11562.
61.Guo X, et al. (2004) The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. Journal of virology. 78:12781–12787.
62.Muller S, et al. (2007) Inhibition of filovirus replication by the zinc finger antiviral protein. Journal of virology. 81:2391–2400.
63.Yiping Zhu., Xinlu Wang., Stephen P Goff., Guangxia Gaoa. (2012) Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J. Nov 5; 31(21): 4236–4246.
64.Seo GJ, et al. (2013) Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell host & microbe.14:435–445.
65.Xu Y, et al. (2014) MicroRNA-93 inhibits inflammatory cytokine production in LPS-stimulated murine macrophages by targeting IRAK4. FEBS letters. 588:1692–1698.
66.Karki S, et al. (2012) Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PloS one. 7:e37398.
67.MacDonald MR, et al. (2007) The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses. Journal of virology. 81:13509–13518.
68.Hayakawa S, et al. (2011) ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nature immunology. 12:37–44.
69.Kerns JA, et al. (2008) Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS genetics. 4:e21.
70.Herker, E., C. Harris, C. Hernandez, A. Carpentier, K. Kaehlcke, A. R. Rosenberg,R. V. Farese, Jr., and M. Ott. (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat. Med. 16: 1295–1298.
71.Jopling, C. L., S. Schutz, and P. Sarnow. (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4: 77–85.
72.Jopling, C. L., M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow. (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309: 1577–1581.
73.Roberts, A. P., A. P. Lewis, and C. L. Jopling. (2011) miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. Nucleic Acids Res. 39: 7716–7729.
74.Liu CH, Zhou L, Chen G, Krug RM. (2015) Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein. Proc Natl Acad Sci Nov 10; 112(45):14048-53.
75.Tang Q., Wang X., Gao G. (2017) The Short Form of the Zinc Finger Antiviral Protein Inhibits Influenza A Virus Protein Expression and Is Antagonized by the Virus-Encoded NS1. J Virol. Jan 3;91(2). pii: e01909-16.
76.Dong C, Sun X, Guan Z, Zhang M, Duan M. (2016) Modulation of influenza A virus replication by microRNA-9 through targeting MCPIP1. J Med Virol. Jan; 89(1):41-48.
77.Yángüez E., Rodriguez P., Goodfellow I., Nieto A. (2012) Influenza virus polymerase confers independence of the cellular cap-binding factor eIF4E for viral mRNA translation. Virology. Jan 20;422(2):297-307.
78.Garfinkel MS, Katze MG. (1993) Translational control by influenza virus. Selective translation is mediated by sequences within the viral mRNA 5'-untranslated region. J Biol Chem. Oct 25; 268(30):22223-6.
79.Burgui I, Yángüez E, Sonenberg N, Nieto A. (2007) Influenza virus mRNA translation revisited: is the eIF4E cap-binding factor required for viral mRNA translation? J Virol. Nov; 81(22):12427-38.
80.Yángüez E, Castello A, Welnowska E, Carrasco L, Goodfellow I, Nieto A. (2011) Functional impairment of eIF4A and eIF4G factors correlates with inhibition of influenza virus mRNA translation. Virology. Apr 25; 413(1):93-102.
81.Yángüez E, Rodriguez P, Goodfellow I, Nieto A. (2012) Influenza virus polymerase confers independence of the cellular cap-binding factor eIF4E for viral mRNA translation. Virology. Jan 20; 422(2):297-307.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top