(3.238.36.32) 您好!臺灣時間:2021/02/27 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉得昇
研究生(外文):LIU, DE-SHENG
論文名稱:低鹼性水泥基質複合材料力學與耐久性質之研究
論文名稱(外文):Study on Mechanics Properties and Durability of Low-alkali-cement-based Materials
指導教授:鄭安
指導教授(外文):CHENG, AN
口試委員:鄭安蘇錦江趙紹錚林威廷
口試委員(外文):CHENG, ANSU, JIN-KINGCHAO, SAO-JENGLIN, WEI-TING
口試日期:2018-01-17
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:土木工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:124
中文關鍵詞:低鹼性水泥基質複合材料鈣矽比矽灰矽灰飛灰體積穩定性
外文關鍵詞:Low-alkali-cement-based materialsCalcium-silica ratioSilica fumeFly ashVolume stability
相關次數:
  • 被引用被引用:2
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對高放射性廢棄物多重障壁結構物所使用建築材料進行探討。多數國家採用膨潤土之緻密防水特性保護廢棄物貯存罐,地下結構物易受地下水緩慢滲透影響,卜特蘭水泥之滲透孔隙水酸鹼值約12.0~13.0之間,易破壞膨潤土緻密防水特性,瑞典、芬蘭及日本等多國採用低鹼性水泥基質複合材料維持膨潤土特性且力學與耐久性質不受影響,添加卜作嵐材料能有效使滲透孔隙水酸鹼值降至11.0以下,而酸鹼值下降原因來自於鈣矽比降低,本研究發現鈣矽比低於0.8以下則具低酸鹼值效果。
本研究以各國低鹼性水泥基質複合材料進行配比設計,第一部分將矽灰以高摻量取代水泥0%~60%及飛灰、爐石、矽灰等三種卜作嵐材料混合比例介於40%~80%取代水泥量進行13組配比初步分析,第二部分即針對前述配比中,挑選兩組進行研究並探討最佳配比。硬固性質試驗包括抗壓試驗、抗拉試驗、抗彎試驗以及超音波試驗得知砂漿力學行為;耐久性質以飽和吸水率試驗、快速氯離子滲透試驗、加速氯離子非穩態遷移試驗、乾縮試驗、環狀乾縮試驗與鋼筋腐蝕試驗對於孔隙結構抗氯離子行為與體積穩定性進行分析;化學性質試驗以酸鹼值測定試驗、X射線螢光分析試驗、X射線繞射試驗進行鈣矽比與水化生成物成分分析;微觀性質以壓汞孔隙量測試驗與電子顯微鏡進行觀察。研究結果如下,力學行為在齡期91天呈現,以40%矽灰取代之配比有最佳效果且基於長期力學行為提升而挑選20%矽灰與40%飛灰配比;耐久性質發現選用配比對抗氯離子能力有極佳效果,體積穩定性發現,大量使用卜作嵐材料因比重小,藉水化反應後轉為比重大之C-S-H膠體,導致孔隙收縮造成體積穩定性不佳;化學性質之酸鹼值受鈣矽比影響,與文獻中提及鈣矽比若低於0.8時,使酸鹼值低於11.0之現象相符。整體而言,硬固性質與化學性質皆能達到低鹼性水泥基值複合材料特性要求,化學性質與微觀性質能確立水化生成物實際情況,耐久性質欲應用於實際工程仍需改善體積穩定性。
This study explores the use of building materials for multiple-barrier structures with high levels of radioactive waste. Most countries use bentonite with waterproof properties to protect storage tank. Underground structures are influence by slow penetration of groundwater, Portland cement penetration pore water pH value was between 12.0 to 13.0 will affect bentonite dense waterproof properties. Sweden, Finland and Japan and other countries using low-alkali-cement-based materials to maintain the bentonite properties and the mechanical and durability properties of construction materials are not affected. Pozzolan materials can effectively reduce the pH value of the pore water infiltration below 11.0. The reason for the decline in the pH value is calcium silicon ratio reduce. This study found that calcium silicon ratio below 0.8 has a decline pH effect.
In this study, the low-alkali-cement-based materials of various countries to design the ratio, the first part used silica fume cement to replace from 0% to 60% and fly ash, furnace stone, silica fume and other three kinds of pozzolan materials mixing ratio of 40% to 80% instead of the amount of cement for 13 groups of preliminary analysis. The second part is for the previous match ratio, select two groups to study and explore the best ratio. Hard-hardening properties include compression tests, tensile tests, bending tests and ultrasonic tests that mechanical properties of mortars; durable nature of saturated water absorption test, resist chloride ion penetration test, rapid chloride migration test, shrinkage test, cyclic shrinkage test and reinforcement corrosion test for pore structure of chloride ion behavior and volume stability analysis; chemical properties of the test to determine the value of pH, X-ray fluorescence analysis test, X-ray diffraction test for calcium and silicon ratio and hydrate composition analysis; the microscopic nature of the mercury intrusion porosimetry test and electron microscopy observations. The results are as below, mechanical behavior in the age of 91 days presented, 40% silica fume ratio replacement has the best results and based on long-term mechanical behavior to enhance the selection of 20% silica fume and 40% fly ash ratio; durable nature found that the selection of the ratio have resistance against chloride ions have excellent results, volume stability found, large amount of material used as a small proportion of pozzolan materials, C-S-H colloid converted to the major proportion by the hydration reaction, as the result pore volume contraction caused by poor stability; the chemical nature of the pH value by calcium silicon ratio, it is mentioned in the literature that when the ratio of calcium to silicon is less than 0.8. It makes the value of pH below 11 consistent. In general, hard-setting properties and chemical properties both can meet the requirements of low-alkali-cement-based materials, chemical and micro-properties can establish the actual situation of hydration products, durability properties for practical applications still need to improve the dimensional stability.
摘要-I-
Abstract-II-
誌謝-IV-
目錄-V-
表目錄-VIII-
圖目錄-X-
第一章 緒論-1-
1.1. 研究背景與動機-1-
1.2. 研究目的-4-
1.3. 研究流程-4-
第二章 文獻回顧-6-
2.1. 卜作嵐材料-6-
2.1.1. 卜作嵐定義與反應原理-6-
2.1.2. 矽灰之成分與性質-7-
2.1.3. 飛灰之成分與性質-8-
2.1.4. 水淬高爐爐石粉之成分與性質-10-
2.1.5. 水化生成物-12-
2.2. 低鹼性水泥基質複合材料-14-
2.2.1. 低鹼性水泥基質複合材料特性與機理-14-
2.2.2. 低鹼性水泥基質複合材料與膨潤土互制行為-15-
2.2.3. 鈣矽比與酸鹼值之關係-17-
2.3. 孔隙結構與有害物質傳輸特性-18-
2.3.1. 孔隙結構-18-
2.3.2. 氯離子擴散機理-20-
2.3.3. 中性化-21-
2.3.4. 鋼筋腐蝕-22-
2.4. 體積穩定性-24-
2.4.1. 低鹼性水泥基質材料之體積穩定性-24-
2.4.2. 收縮分類-25-
2.4.3. 乾燥收縮有無束制行為試驗方式-27-
第三章 試驗計畫-30-
3.1. 試驗材料與配比-30-
3.1.1. 試驗材料介紹-30-
3.1.2. 配比設計-35-
3.2. 試驗方法與儀器設備-39-
3.2.1. 新拌性質試驗-40-
3.2.2. 硬固性質試驗-41-
3.2.3. 耐久性質試驗-45-
3.2.4. 化學性質試驗-55-
3.2.5. 微觀性質試驗-58-
第四章 結果與分析-62-
4.1. 低鹼性水泥基質複合材料前導試驗結果評估-62-
4.1.1. 新拌性質-62-
4.1.2. 硬固性質-64-
4.1.3. 化學性質-67-
4.1.4. 前導試驗結果評估-70-
4.2. 低鹼性水泥基質材料試驗結果分析-70-
4.2.1. 硬固性質-70-
4.2.2. 耐久性質-77-
4.2.3. 化學性質-91-
4.2.4. 微觀試驗分析-98-
4.2.5. 工程性質綜合分析-110-
第五章 結論與建議-118-
5.1. 結論-118-
5.2. 建議-120-
參考文獻-121-
1.Posiva Oy Olkiluoto, working report 2004-45, Posiva, p.18, 2004.
2.Posiva Oy Olkiluoto, 27160 Eurajoki, 檢自http://www.posiva.fi/。
3.Svensk Kärnbränslehantering AB, 檢自http://www.skb.se/。
4.Svensk Kärnbränslehantering AB, Low-pH injection grout for deep repositories, SKB report R-05-40, 2005.
5.林炳炎,「飛灰•矽灰•高爐爐石用在混凝土中」,台北,三民書局,1993。
6.ASTM C618, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete”, American Society for Testing and Materials, 2015.
7.ACI Committee 116, “Cement and Concrete Terminology”, American Concrete Institute, 2000.
8.Terence C. Holland, “Silica Fume User’s Manual”, Lovettsville, Virginia: Federal Highway Administration and the Silica Fume Association, 2005.
9.李明君,「如何使用飛灰以提昇混凝土品質」,臺北,財團法人台灣營建研究院,1997。
10.黃兆龍,「卜作嵐材料應用於混凝土管材之永續理念」,2014。檢自http://www.tsa-net.tw/new/3.pdf.
11.顏聰,「高飛灰摻量混凝土產製技術與應用研究」,臺灣電力公司,2011。
12.柳宏儒,鈣離子浸析行為對水泥基質材料抗壓性及耐久性之研究,國立宜蘭大學建築與永續規劃研究所碩士論文,2011。
13.中聯資源股份有限公司,網路資源: http://www.chc.com.tw/.
14.鄭安,使用爐石及熱浸鍍鋅鋼筋對混凝土梁抗蝕及力學行為影響之研究,國立臺灣海洋大學材料工程研究所博士學位論文,2005。
15.CNS 12549,混凝土及水泥砂漿用水淬高爐爐碴粉,2015。
16.JIS A6206,コンクリート用高炉スラグ微粉末,2003。
17.黃兆龍,「混凝土性質與行為」,詹氏書局,1997。
18.張皓鈞,低放射性廢棄物最終處置場工程障壁材料於未飽和/飽和環境下之長期穩定性研究,國立中央大學土木工程學系博士論文,2005。
19.欒文樓、李明路,「膨潤土的開發應用」,北京地質出版社,1998。
20.陳俶季,「環境大地工程學」,茂昌圖書有限公司,2002。
21.Bavushkin VI, Matveyev GM, Metedlov-Petrosyan OP. “Thermodynamics of silieates”. Springer-Verlag, pp.276-281, 1985.
22.Mindess, S., and Young, J. F., “Concrete”, Prentic-Hall, United States of America, 1981.
23.Power, T. C., The physical structure of Portland cement paste, in The Chemistry of Cements, Acad. Press, London, pp.391-416, 1958.
24.Metha, P. K., Manmohan, D., Pore size distribution and permeability of hardened cement paste,7th Internation Symposium of the Chemistry of Cement, Part III, VI. Paris: International Congress on the Chemistry of Cement, 1980.
25.Johannesson, B. F., “Diffusion of a mixture of cations and anions dissolved in water”, Cement and Concrete Research, Vol. 29, pp.1261-1270, 1999.
26.Yonezaca, T. Ashworth, V. R. P. M. Procter. “Pore solution composition and chloride effect on the corrosion of steel in concrete”, Corrosion Engineering, Vol. 44, pp.489-499, 1988.
27.Creatsil, K. K., and Glasser, F. P., Analysis of the steel:concrete interface, Proc. of Conf., UK, On Corrosion on Reinforcement in Concrete, pp.74-86, 1990.
28.鄭讚慶,防蝕塗層效能評估及鋼筋腐蝕對握裹力強度影響之研究,國立臺灣海洋大學河海工程研究所碩士論文,2009。
29.Lee, K. M., Lee, H. K., Lee, S. H., Kim G. Y., “Autogenous Shrinkage of Concrete Containing Granulated Blast-Furnace Slag,” Cement and Concrete Research, Vol. 36, pp.1279-1285, 2006.
30.O. S. B. Al-Amoudi, M. Maslehuddin, M. Shameem, M. Ibrahim, Shrinkage of plain and silica fume cement concrete under hot weather Cem Concr Compos, Vol 29, pp.690-699, 2007.
31.ASTM C311-16, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, 2016.
32.馬麗媛、姚燕、王玲,高強混凝土收缩開裂趨势的研究,中國建築材料科學研究院,pp.170-177,2001。
33.J. Francis Young, “Concrete” Second Edition, Pearson Education, Inc. 2003.
34.Bissonnette B., P. Pierre, M. Pigeon, “Influence of key parameters on drying shrinkage of cementitious materials”, Cement and Concrete Research, Vol. 29, pp.1655-1662, 1999.
35.Yilmaz Akkaya, Chengsheng Ouyang, Surendra P. Shah” Effect of supplementary cementitious materials on shrinkage and crack development in concrete”, Cement and Concrete Composites, Vol. 29, pp. 117-123, 2007.
36.Guðmundsson, J. G., “Long-term creep and shrinkage in concrete using porous aggregate - the effects of elastic modulus,” School of Science and Engineering, Reykjavik University, Reykjavik, Iceland, 2013.
37.Neville, A. M., “Properties of Concrete,” Pitman, London, pp.374, 1981.
38.ASTM C1581-16, Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage, 2016.
39.Svensk Kärnbränslehantering AB, Development of an accurate pH measurement methodology for thepore fluids of low pH cementitious materials, SKB report R-12-02, 2012.
40.Suryavanshia A. K., Scantleburyb J. D., Lyonb S. B., “Mechanism of Friedel’s salt formation in cement rich in tri-calcium aluminate”, Cement and Concrete Rearch, Vol. 26, pp.717-727, 1996.
41.Nader Ghafoori, Rebecca Spitek, Meysam Najimi, “Influence of limestone size and content on transport properties of self-consolidating concrete”, Construction and Building Materials, Vol. 127, pp.588-595, 2016.
42.Rao G. A., “Influence of silica fume replacement of cement on expansion and drying shrinkage”, Cement and Concrete Research, Vol. 28, pp.1505-1509, 1998.
43.Rao G. A., “Long-term drying shrinkage of mortar - influence of silica fume and size of fine aggregate”, Cement and Concrete Research, Vol. 31, pp.171-175, 2001.
44.鄭安、林威廷、羅佳豪、范家瑋、陳世政,“高摻量飛灰混凝土體積穩定性及水化特性探討”,TCI 2015 Conference on Concrete Engineering,2015。
45.Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials, SKB report R-11-08, pp.34-40, 2011.
46.Kazuko Haga, Masahito Shibata, Michihiko Hironaga, Satoru Tanaka, Shinya Nagasaki, “Change in pore structure and composition of hardened cement paste during the process of dissolution”, Cement and Concrete Research, Vol. 35, pp.943-950, 2005.
47.Florian Deschner, Frank Winnefeld, Barbara Lothenbach, Sebastian Seufert, Peter Schwesig, Sebastian Dittrich, Friedlinde Goetz-Neunhoeffer, Jürgen Neubauer, “Hydration of Portland cement with high replacement by siliceous fly ash”, Cement and Concrete Research, Vol. 42, pp.1389-1400, 2012.
48.蕭江碧,楊仲家,卓世偉,“混凝土耐久性試驗研究-氯離子滲入深度(速率)之探討”,內政部建築研究所研究報告,2004。
49.苗伯霖、趙文靜、吳秀芬,“飛灰爐石於混凝土工程之合理運用”,台灣營建研究院,2000。
50.O. López-Zaldívar, R. V., Lozano-Díez, A. Verdú-Vázquez, N. Llauradó-Pérez, “Effects of the addition of inertized MSW fly ash on calcium aluminate cement mortars”, Construction and Building Materials, Vol. 157, pp.1106-1116, 2017.

電子全文 電子全文(網際網路公開日期:20231231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔