跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許清貴
研究生(外文):Hsu, Ching-Kuei
論文名稱:煉製工業應用廢棄物料於能源再利用之管理研究
論文名稱(外文):Management Research on Refinery Wastes for Energy Recovery
指導教授:王振華王振華引用關係周志儒周志儒引用關係
指導教授(外文):WANG, CHEN-HUAJOU, CHIH-JU G.
口試委員:康佩群高志明蔡政賢何宗漢張偉哲周志儒王振華
口試委員(外文):HONG, PUI-KWAN ANDYKAO, C. M. JIMMYTSAI, CHENG-HSIANHO, TSUNG-HANCHANG, WEI-CHEJOU, CHIH-JU G.WANG, CHEN-HUA
口試日期:2018-06-14
學位類別:博士
校院名稱:國立高雄第一科技大學
系所名稱:工學院工程科技博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:96
中文關鍵詞:能源管理製程尾氣回收薄膜灰色關聯分析
外文關鍵詞:Energy ManagementWaste Tail-Gas RecoveryMembraneGrey Relational Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
煉製工業製程廢氣尾氣以回收轉化為燃料能源及薄膜分離回收氫能再利用,達成廢棄資源多元化管理的目的。本研究以回收製程廢棄尾氣完全取代天然氣及取代部分燃料油,作為運轉中加熱爐燃料進行實場測試,結果顯示加熱爐效率由91.4%降低至90.6%。透過調整加熱爐檔板角度、提高預熱空氣溫度及燃油溫度之節能技術,提升加熱爐整體熱效率與降低溫室氣體排放。結果顯示加熱爐空氣預熱溫度由240℃提高至270℃,每年可節省4.9×106 m³ 燃料及減少5.5×10³噸CO2排放;提高燃油溫度,每年可節省7.5 × 105 m³燃料氣與減少858噸CO2排放;加熱爐擋板角度由45˚調降至39˚,每年可節省2.3×106 m³ 燃料及減少2.6×10³噸CO2排放。此外,以灰色關聯分析預測檔板角度、預熱空氣溫度及燃油溫度符合節能需求及效益,最佳操作值分別介於43~41˚、235~245 ℃及105~115 ℃,而此預測值與實場加熱爐操作變數最佳值是一致性。
另一方面,以中空薄膜分離回收廢氣尾氣中氫氣,氫氣純度從78.7提純至93.9 mol%,氫氣回收率34.4%,每年可回收氫氣4.6 × 103 km³與減少5.2×10³噸CO2排放。
因此、製程廢氣尾氣以薄膜分離回收氫能與將其轉化為燃料資源,達到廢氣能源回收再利用、資源化與節能減碳有效管理策略。

This study converts energy resource and recycling into energy and the separation and recovery of high-quality hydrogen by membrane can diversify the waste resources. The waste tail-gas from the recycling process replaced natural gas and some of the fuel oil completely, and was tested in the field as a heating furnace fuel in operation. The furnace's efficiency was reduced from 91.4% to 90.6%. Energy-saving technologies that adjust the angle of the furnace baffle, increase the temperature of the preheated air,and the temperature of the fuel will help increase the overall thermal efficiency of the furnace and reduce greenhouse gas emissions. The results showed that the air preheating temperature was increased from 240 to 270 ℃. Save 4.9×106 m³ of fuel and reduce 5.5×10³ tons of carbon dioxide emissions,increase fuel temperature, save 7.5 × 105 m³/yr. and reduce 858 tons of CO2 emissions annually;The furnace baffle angle was reduced from 45˚to 39˚, each year, 2.3 x 106 m³ of fuel and 2.6 x 10³ tons of carbon dioxide emissions could be saved.
In addition, uses "Grey Relational Analysis" to predict the best operating values of baffle angle, preheated air temperature, and fuel temperature were estimated to be 43 to 41˚, 235 to 245℃, and 105 to 115 ℃, respectively. And the prediction will meet the refinery Industry furnace operating variable best value. On the other hand, this study also uses "Membrane Separation Method" to recovered the waste tail gas which contents hydrogen was purified from 78.7 to 93.9 mol%, hydrogen's recovery rate of the waste tail gas was 34.4%, each year, 4.6 x 10³ km³ of hydrogen and 5.2 x 10³ tons of carbon dioxide emissions could be saved.
Therefore, the process tail gas can be separated from the hydrogen through the membrane and converted into fuel resource, in order to achieve waste gas energy resource recycling, resource utilization, energy conservation, and effective carbon management strategies.

中文提要 i
英文提要 ii
誌謝 iv
目錄 v
表目錄 ix
圖目錄 xi
一、緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
二、文獻回顧 3
2.1 能源政策 3
2.2 廢棄能源回收再利用管理 4
2.3 節能控制技術 5
  2.3.1改善製程技術 5
  2.3.2石化製程能源管理 6
  2.3.2.1氫氣對能源效益的影響 6
  2.3.2.2排氣廢熱回收 8
  2.3.2.3過剩空氣氧氣濃度 8
  2.3.2.4爐膛真空度 (FURNACE VACUUM) 9
  2.3.2.5燃油溫度 (FUEL OIL TEMPERATURES) 10
  2.3.2.6燃油霧化條件 (FUEL OIL ATOMIZING CONDITION) 10
2.4 含氫混合氣分離技術 10
  2.4.1變壓吸附法 11
  2.4.2低溫蒸餾法 11
  2.4.3膜分離法 11
  2.4.3.1無機膜 11
  2.4.3.2有機高分子薄膜 12
2.5 薄膜應用 15
  2.5.1 薄膜分離原理 16
  2.5.2 影響薄膜分離的因素 17
2.6 統計預測分析方法 18
  2.6.1 時間序列分析 18
  2.6.2 人工智能 18
  2.6.3 迴歸分析 19
  2.6.4 模糊理論分析 19
  2.6.5 層級分析法(THE ANALYTIC HIERARCHY PROCESS , AHP) 19
2.7 灰色關聯分析理論 20
2.7.1灰關聯分析 20
2.7.2 定量化灰關聯生成 22
2.7.3 灰關聯分析應用於實驗變因最佳值 23
三、實驗設備與方法 24
3.1 實驗設備 24
3.2 實驗方法 27
四、結果與討論 31
4.1 廢氣尾氣組成 31
  4.1.1 廢氣尾氣組成對爐膛效益影響 31
  4.1.2 廢氣尾氣組成對火焰形式影響 34
  4.1.3 廢氣尾氣組成對溫度影響 34
4.2 調整檔板角度對爐膛效益影響評估 36
  4.2.1 檔板角度對爐膛真空度影響 36
  4.2.2 檔板角度對爐膛溫度及熱效率之影響 36
  4.2.3 檔板角度對過剩空氣及燃料流量影響 39
  4.2.4 檔板角度對火焰型態影響 41
4.3 調整空氣預熱溫度 42
  4.3.1輻射區、對流區溫度與爐膛真空度之影響 42
  4.3.2燃料用量及剩餘空氣O2濃度之影響 44
4.4 調整燃油溫度 47
  4.4.1對流區溫度與爐膛真空度之影響 47
4.4.2剩餘空氣O2及燃料氣流量之影響 49
4.5 最適化分析 52
  4.5.1 SPSS相關性分析 54
  4.5.2灰色分析 58
  4.5.3 GM(0,N)分析 79
4.6 薄膜分離含氫廢氣尾氣回收氫氣 85
五、結論與建議 87
5.1 結論 87
5.2 建議 88
參考文獻 90

1.Ampaitepin Singhabhandhu, Tetsuo Tezuka, 2010, "The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics", Energy, vol. 35,pp. 2544-2551.
2.Bahadori, A., Vuthaluru, H.B., 2010, "Estimation of energy conservation benefits in excess air controlled gas-fired systems", Fuel Process Technol, vol.91, pp. 1198-1203.
3.Balachandran, U., Lee, T.H., Chen, L., Song, S.J., Picciolo, J.J., S.E. Dorris, 2006,"Hydrogen separation by dense cermet membranes", Fuel, vol. 85, pp. 150–155.
4.Blengini, G.A., Busto, M., Fantoni, M., Fino, D., 2012, " Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA", Waste Manag, vol.32, pp. 1000-1008.
5.Bojic, M., Mourdoukoutas, P., 2000,"Energy saving does not yield CO2 emission reductions: the case of waste fuel use in a steel mill" ,Appl Therm Eng,vol. 20 , pp. 963-975
6.Brunner, P.H., Rechberger, H., 2015,"Waste to energy- key element for sustainable waste management", Waste Manag, vol.37, pp. 3-12.
7.Caputo, A.C., Scacchia, F., Pelagagge, P.M., 2003,"Disposal of by-products in olive oil industry: waste-to-energy solutions", Appl Therm Eng, vol.23, pp. 197-214.
8.Chan, D.Y.L., Yang, K.H., Lee, J.D., Hong, G.B., 2010, "The case study of furnace use and energy conservation in iron and steel industry", Energy, vol.35, pp. 1665-1670.
9.Chang, W.C. and Chen, H.S., 2001, "Studies on the method to quantify grey relation, Symposium on Application and Theory of Grey System", Yun-Lin (Taiwan), pp.106-113.
10.Chester. L., 2010,"Conceptualising energy security and making explicit its polysemic nature", EnergyPolicy,vol.38, pp.887-895.
11.Choudhuri, A.R. and Gollahalli, S.R., 2000,"Combustion characteristics of hydrogen- hydrocarbon hybrid fuels", Int. J. Hydrogen Energy, vol.25, pp.451-462.
12.Choudhuria A.R. and Gollahalli S.R., 2003,"Characteristics of hydrogen–hydrocarbon composite fuel turbulent jet flames", Int. J. Hydrogen Energy, vol.28, pp.445–454.
13.Chuang, Ming Chih. and Ma, Hwong Wen., 2013, "An assessment of Taiwan’s energy policy using multi-dimensional energy security indicators", Renewable and Sustainable Energy Reviews, vol.17, pp. 301–311.
14.Danon, B., Cho, E.S., Jong, W.D., Roekaerts, D.J.E.M., 2011, "Parametric optimization study of a multi-burner flameless combustion furnace", Applied Thermal Engineering, vol.31, pp.3000-3008.
15.Derudi, M., Villani, A., Rota, R., 2007, "Sustainability of mild combustion of hydrogen-containing hybrid fuels", Proceedings of the Combustion Institute, vol.31, pp. 3393–3400.
16.Flamme, M., 2001, "Low NOx combustion technologies for high temperature application", energy conversion and management, vol.42 , pp.1919-1935.
17.Gentizis, T., 2000,"Subsurface sequestration of carbon dioxide-an overview from an Alberta (Canada) Perspective", International Journal of Coal Geology,vol. 43,pp. 287-305.
18.Guo H.; Smallwood G. J.; Liu F.; Ju Y.; GÜlder Ö. L., 2005, "The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames",Proceedings of the Combustion Institute,vol.30, pp.303–311.
19.Hawkes, E.R. and Chen, J.H., 2004,"Direct numerical simulation of hydrogen- enriched lean premixed methane-air Flames", Combustion and Flame,vol.138, pp. 242-258.
20.Hill, S. C. and Smoot, L. D., 2000, "Modeling of nitrogen oxides formation and destruction in combustion systems", Prog Energ Combust, vol.26, pp.417–458.
21.Hsu, P. F. and Chien, P. C., 2008, "Optimal selection of media agencies for an advertiser using the GRA and entropy", J. Grey Syst, vol.20(1), pp.27-38 .
22.Hu, J.L. and Kao, C.H., 2007, "Efficient energy-saving targets for APEC economies", Energy Policy, vol.35, pp.373–382.
23.IEA Energy Technology Perspectives 2017-Catalying Energy Technology Transformations, OECD/IEA, 2017/06/06.
24.Ilbas, M., 2005,"The effect of thermal radiation and radiation models on hydrogen-hydrocarbon combustion modeling", Int. J. Hydrogen Energy,vol. 30,pp.1113 -1126.
25.İlbas, M., Yılmaz, İ., Kaplan, Y., 2005,"Investigations of hydrogen and hydrogen– hydrocarbon composite fuel combustion and NOx emission characteristics in a model combustor", Int. J. Hydrogen Energy, vol.30, pp.1139 – 1147.
26.Ismail, S. and Mehta, P.S., 2011, "Evaluation of the effects of fuel and combustion-related processes on exergetic efficiency", Fuel, vol.90 (5), pp. 1818-1825.
27.Ji, C., Wang, S., 2010, "Combustion and emissions performance of a hybrid hydrogen- gasoline engine at idle and lean conditions", Int. J. Hydrogen Energy, vol. 35, pp. 346-355.
28.John Wiley & Sons, 2014, "Applied Econometric Time Series (4th ed.)", Walter Enders.
29.Konnov, A. A.; Colson, G.; Ruyck, J. D., 2001,"NO formation rates for hydrogen combustion in stirred reactors", Fuel, vol.80, pp.49–65.
30.Kwan, S.M., Leung, A.Y.L., Yeung, K.L., 2010,"Gas permeation and separation in ZSM-5 micromembranes", Separation and Purification Technology, vol.73, pp. 44–50.
31.Lee, C.L. and Jou, C.J.G., 2011,"Saving fuel consumption and reducing pollution emissions for industrial furnace", Fuel Processing Technology , vol.93, pp.2335-2340.
32.Lee, C.L. and Jou, C.J.G., 2012,"Improving furnace and boiler cost-effectiveness and CO2 Emission by adjusting excess air", Environ Progress, vol.31, pp.157-163.
33.Lee, C.L. and Jou, C.J.G., 2012,"Integrated methods to improve efficiency of furnace burning recovered tail Gas", Int J Hydrogen Energy, vol.37 , pp. 6620-6625.
34.Lee, C.L. and Jou, C.J.G., 2013, "Improving furnace energy efficiency through adjustment of damper angle", Int J Hydrogen Energy, vol.38 , pp. 2504-2509.
35.Lefevre N., 2010, "Measuring the security implications of fossil fuel resource concentration", Energy Policy, vol.38, pp.1635–44.
36.Lund, P.D., 2007, "The link between political decision-making and energy options: assessing future role of renewable energy and energy efficiency in Finland", Energy, vol.32 , pp. 2271-2281.
37.Lunghi, P. and Burzacca, R., 2004, "Energy recovery from industrial waste of a confectionery plant by means of BIGFC plant", Energy, vol. 29, pp. 2601-2617.
38.Min B.Shrestha. and Guna R.Bhatta., 2018, "Selecting appropriate methodological framework for time series data analysis", The Journal of Finance and Data Science, vol.4, pp. 71-89.
39.Moon, J.H., Bae, J.H., Bae, Y.S., Chung, J.T., Lee, C.H., 2008, "Hydrogen separation from reforming gas using organic templating silica/alumina composite membrane", Journal of Membrane Science , vol.318, pp. 45–55.
40.Naha, S. and Aggarwal, S. K., 2004,"Fuel effect on NOx emission in partially premixed flames",Combust. Flame, vol.139, pp.90–105.
41.Okorie.E.Agwu, Julius.U.Akpabio, Sunday B.Alabi, AdewaleDosunmu, "Artificial intelligence techniques and their applications in drilling fluid engineering: A review", Journal of Petroleum Science and Engineering, vol.167, pp. 300-315.
42.Ozalp, N. and Hyman, B., 2006,"Calibrated models of on-site power and steam production in US manufacturing industries", Appl Therm Eng, vol.26, pp.530–539.
43.Phair, J.W., Badwal, S.P.S., 2006,"Materials for separation membranes in hydrogen and oxygen production and future power generation", Science and Technology of Advanced Materials, vol.7, pp.792–805.
44.Prelec, Z., Mrakovčić, T., Dragičević, V., 2013, "Performance study of fuel oil additives in real power plant operating conditions", Fuel Process Technol, vol.110 , pp. 176-183.
45.Reda Boukezzoula, Sylvie Galichet, Didier Coquin, 2018, "From fuzzy regression to gradual regression: Interval-based analysis and extensions", Information Sciences, vol.441, pp.18-40.
46.Rørtveit , G. J., Hustad, J. E., Li, S. C., Willams, F. A., 2002, "Effects of diluents on NOx formation in hydrogen counterflow flames", Combust. Flame, vol.130, pp.48–61.
47.Saygin, D., Patel, M.K., Worrell, E., Tam, C., Gielen, D.J., 2011, "Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector", Energy, vol. 36, pp. 5779-5790.
48.Schaeffer, R., Szklo, AS., de Lucena AFP., Borba, BSMC, Nogueira LPP., Fleming, FP.,Troccoli, A., Harrison, M., Boulahya, MS., 2012,"Energy sector vulnerability to climate change: a review", Energy,vol.38, pp.1–12.
49.Schefer, R.W., 2003, "Hydrogen enrichment for improved lean fame stability",Int. J. Hydrogen Energy, vol.28 , pp.1131-1141.
50.Shaoa, L. and Chung, T.S., 2009, "In situ fabrication of cross-linked PEO/silica reverse-selective membranes for hydrogen purification", Int J Hydrogen Energ, vol.34, pp. 6492-6504.
51.Si, M., Thompson, S., Calder, K., 2011, "Energy efficiency assessment by process heating assessment and survey tool (PHAST) and feasibility analysis of waste heat recovery in the reheat furnace at a steel company", Renew Sust Energ Revs, vol.15 , pp. 2904-2908.
52.Singhabhandhu, A. and Tezuka, T., 2010, "The waste-to-energy framework for integrated multi-waste utilization: waste cooking oil, waste lubricating oil, and waste plastics",Energy, vol.35 , pp. 2544-2551.
53.Sovacool BK. and Brown MA., 2010, "Competing dimensions of energy security: an international perspective", Annual Review of Environment and Resources,vol.35, pp.77-108.
54.Suda, T., Takafuji, M., Hirata, T., Yoshino, M., Sato, J., 2002, "A study of combustion behavior of pulverized coal in high-temperature air", Proceedings of the Combustion Institute ,vol.29, pp.503–509.
55.Tian, Xiaogang., Ju, Meiting., Shao, Chaofeng., Fang, Zili., 2011, "Developing a new grey dynamic modeling system for evaluation of biology and pollution indicators of the marine environment in coastal areas", Ocean & Coastal Management, vol.54, pp. 750-759.
56.Tong, Jianhua. Matsumura, Yasuyuki., 2006, "Pure hydrogen production by methane steam reforming with hydrogen-permeable membrane reactor",Catalysis Today, vol.111 , pp.147–152.
57.Tonna, B. and Peretz, J.H., 2007, "State-level benefits of energy efficiency", Energy Policy, vol. 35, pp. 3665–3674.
58.Tucker, R. and Ward, J., 2012, "Identifying and quantifying energy savings on fired plant using low cost modelling techniques", Applied Energy, vol.89, pp. 127-132.
59.Van, Vliet O., Krey, K., McCollum, D., Pachauri, S., Nagai, Y., Rao S., Riahi, K., 2012,"Synergies in the Asian ebergy system: climate change, energy security, energy access and air pollution", Energy Economics, vol.34, pp.S470-S480.
60.Veziroğlu, T.N. and Şahin, S., 2008, "21st Century's energy: hydrogen energy system Energy Convers Manag", vol.49, pp. 1820-1831.
61.Weber, R., Orsino, S., Lallemant, N., Verlaan, A., 2000, "Combustion of natural gas with high-temperature air and large quantities of flue gas", Proceedings of the Combustion Institute, vol.28, pp.1315–1321.
62.Winzer C., 2012,"Conceptualizing energy security",Energy Policy, vol.46, pp.36-48.
63.World Economic Forum Global risks 2015(10th ed.) (2015)
64.Worrell, E., Price, L., Martin, N., 2001,"Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector", Energy, vol.26, pp. 513-536.
65.Wei-Che, Chang., 2010, "The Experiment Independent Variable Optium Finding via Grey Relational Analysis", Jouranl of Grey System,vol.13, pp.165-174.
66.中技社節能技術發展中心(CTCI) ,2000, "蒸氣鍋爐高效率作業技術手冊".
67.吳再益,林唐裕,侯仁義,柯亮群,黃永慧,2012,"我國能源政策發展模式及其未來方向探討",臺灣銀行季刊第六十三卷第二期,pp.34.
68.裴文(Pei, Wen.) ,黃筱惠(Huang, Hsiao-hui.) ,2008,"應用模糊層級分析法於連鎖藥妝店之評估準則研究,"第12 屆整合管理研討會議,pp.431-449.
69.詹德隆,1998,"鍋爐燃料與燃燒",中華民國鍋爐協會,pp.110-125.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top