跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴穎逸
研究生(外文):LAI, YING-YI
論文名稱:利用光纖布拉格光柵研製新型風向風速感測器
論文名稱(外文):Optical-Fiber Wind Speed and Direction Sensor Based on Fiber Bragg Grating
指導教授:梁財春梁財春引用關係
指導教授(外文):LIANG, TSAIR-CHUN
口試委員:張勝雄賴富德
口試委員(外文):JHANG,SHENG-SYONGLAI,FU-DER
口試日期:2018-06-28
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電機工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:風向風速感測器大風速高流量光纖布拉格光柵
外文關鍵詞:optical-fiber wind speed and direction sensorhigh wind speedhigh flowfiber bragg grating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
由於台灣處多颱地帶,逢秋夏之際,颱風肆虐頻繁。根據中央氣象局顯示,每年平均有三到五個颱風侵台。而颱風所挾帶的狂風暴雨,使得風機葉片沒有即時停轉。目前一般風力發電機的起動風速約介於 2.5 ~ 4 m/s,於風速 12 ~ 15 m/s時達到額定的輸出容量,為了避免過高的風速損壞發電機,風速到達 20 ~ 25 m/s時,將強迫風力發電機停機。如有即時停機,機器能承受16級風,就能避免風機損壞減少風機的維修成本與損壞。居民住家和公共建設在此環境之長期影響下,更是造成建築物或高塔等逐漸地產生傾斜,不僅日後維護整治經費高,更是嚴重的危害著民眾的生命財產安全。
本研究使用光纖布拉格光柵(Fiber Bragg Grating, FBG)研發一新型光纖風向風速感測器,以不鏽鋼管與彈簧為伸縮支架連接十字鋼架和不繡鋼片之間。當風力帶動不繡鋼片,透過特殊的內部架構設計,光纖布拉格光柵會因環境影響產生中心波長的位移。經實驗結果得知,可測量風速範圍為13.5 ~ 46.3 (m/s),最佳靈敏度為 0.1131 nm/unit。光纖感測比起傳統電子式感測器擁有眾多特點,例如:質輕徑細、高靈敏度、耐惡劣環境、抗電磁干擾、且傳輸訊號較穩定等優點,並應用於公共建設,如測風塔、高樓、燈塔等,且可結合光纖通訊技術進行即時監測,實現高科技安全監測系統之研發,可用於大風速、高流量的場所,以防範颱風的侵襲,以保障民眾的生命之安危。

Because Taiwan lies in the zone which has a lot of typhoons, Taiwan is often visited by typhoons during summer and autumn. According to the research from Central Weather Bureau, there are approximately three to five typhoons hit Taiwan every year. The torrential rain that comes with typhoons cause the fan blade could not stop working immediately. Currently, the start-up wind speed of general wind drive generators is between 2.5~4m/s, and achieve the specified capacity output at wind speed between 12~15m/s. To avoid the over high wind speed damaging the generators, when the wind speed achieves 20~25m/s, the wind speed generator will be forced to stop working. If it can be stopped immediately, the machine can afford 16 wind force scales, and it will prevent the machine from damaging and reduce the cost of maintenance. The resident houses and infrastructures under this long-term effect environment cause the buildings and towers tilt gradually. Not only the maintenance cost will be high, but also threatens people’s lives and properties severely.
This program uses Fiber Bragg Grating (FBG) to think up a new fiber-optic wind speed and direction sensor. The anemometer consists of two sizes of stainless steel pipe and the coil spring designed to connect a cross steel frame and the stainless steel sheet. When wind speed driven the stainless steel, FBGs will be designed through the special internal structure it will make center wavelength drift to reach sensing effect when the sensor affected by displacements. The experimental results show that sensing wind speed range was 13.5 ~ 46.3 (m/s) and best sensitivity can reach of 0.1131 nm/unit. Owing to optical fiber sensor many advantages over electronic sensors including light weight, small size, high sensitivity, enduring adverse circumstances, and immunity to electromagnetic interference. The signal transmissions in an optical fiber are more stable than conventional electronic sensors has been confirmed, can be integrated with optical communications technology to execute real-time monitoring to achieve the development of high-tech security monitoring system. This sensor can be applied to wind towers, tall buildings, and lighthouses. To prevent the invasion of typhoons and guarantee the safety of people’s lives.

中文摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 文獻探討 3
1.3.1 蒲福風級 3
1.3.2 國內外發展之風速感測技術 7
第二章 光纖感測原理應用 20
2.1 光纖構造介紹與工作原理 20
2.1.1 光纖構造 21
2.1.2 光纖傳輸原理 22
2.1.3 光纖傳輸損失 25
2.1.4 光纖種類 28
2.2 光纖光柵構造介紹與工作原理 32
2.2.1 光纖光柵製造方法 32
2.2.2 光纖布拉格原理 33
2.2.3 光纖光柵之種類 35
第三章 光纖感測器製作與實驗架設 39
3.1 光纖風向風速感測器 39
3.1.1 光纖感測器之結構設計 39
3.1.2 零件功能介紹 43
3.1.3 光纖感測器之運作原理 45
3.2 光纖感測器之光路架設 46
3.2.1 光感測之測量儀器 47
3.2.2 光被動元件之量測 48
第四章 實驗測量與結果分析 53
4.1 實驗步驟 53
4.2 光纖風向風速感測器之組裝 56
4.3 光纖風速感測器之實驗結果 58
4.3.1 彈簧拉伸情況 58
4.3.2 不同彈力係數彈簧之波長量測結果 60
4.4 實驗結果分析 68
第五章 結論 69
參考文獻 70
[1]M. Weidong, L. Wen, W. Wang, L. Yong, B. Qinlian, X. Zhao, J. Shan L. Wei, “A novel athermal 40-channel DWDM multi/demultiplexer based on the combination of AWGs and interleaver,” IEEE Photonics Technology Letters, Vol. 19, No. 15, pp. 1115-1117, 2007.
[2]C.-C. Lee, T.-C. Kao, H.-C. Chien S. Chi, “A novel supervisory scheme for OXC based on different time-delay recognition,” IEEE photonics technology letters, Vol. 17, No. 12, pp. 2745-2747, 2005.
[3]C.-M. Tsai, H. Taga, C.-H. Yang, Y.-L. Lo T.-C. Liang, “Demonstration of a ROADM using cyclic AWGs,” Journal of Lightwave Technology, Vol. 29, No. 18, pp. 2780-2784, 2011.
[4]S.-K. Liaw, P.-S. Tsai, H. Wang, H. Le Minh Z. Ghassemlooy, “FBG-based reconfigurable bidirectional OXC for 8× 10 Gb/s DWDM transmission,” Optics Communications, Vol. 358, pp. 154-159, 2016.
[5]J. M. Simmons A. A. Saleh, “Wavelength-selective CDC ROADM designs using reduced-sized optical cross-connects,” IEEE Photon. Technol. Lett., Vol. 27, No. 20, pp. 2174-2177, 2015.
[6]Y. Wu, T. Ye, L. Zhang, X. Hu, X. Li Y. Su, “A cost-effective WDM-PON architecture simultaneously supporting wired, wireless and optical VPN services,” Optics Communications, Vol. 284, No. 5, pp. 1139-1145, 2011.
[7]S.-K. Park, J.-W. Park, S.-R. Lee, H. Yoon, S.-B. Lee S.-S. Choi, “Multiwavelength bidirectional optical crossconnect using fiber Bragg gratings and polarization beam splitter,” IEEE Photonics Technology Letters, Vol. 12, No. 7, pp. 888-890, 2000.
[8]Y. Yu, J. Ingham, J. Rosas-Fernández, A. Wonfor, R. Penty I. White, “Multi-channel return-to-zero signal regeneration using a single phase modulator and an AWG,” Journal, 2010.
[9]J. X. Li K. Chen, “An Interleaver with arbitrary passband width ratio based on hybrid structure of microring and Mach–Zehnder interferometer,” Journal of Lightwave Technology, Vol. 31, No. 10, pp. 1538-1543, 2013.
[10]L. Yi, L. Zhan, Q. Ye, X. Hu Y. Xia, “Gain-clamped erbium-doped fiber-ring lasing amplifier with low noise figure by using an interleaver,” IEEE Photonics Technology Letters, Vol. 15, No. 12, pp. 1695-1697, 2003.
[11]E. Lazzeri, A. T. Nguyen, N. Kataoka, N. Wada, A. Bogoni L. Poti, “All Optical Add and Drop Multiplexing Node for Hybrid Topology Networks,” Journal of Lightwave Technology, Vol. 29, No. 24, pp. 3676-3682, 2011.
[12]L.-Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Optics Communications, Vol. 336, No. 2, pp. 73-76, 2015.
[13]L. Ma, Z. Kang, Y. Qi S. Jian, “Fiber-optic temperature sensor based on a thinner no-core fiber,” Optik-International Journal for Light and Electron Optics, Vol. 126, No. 9-10, pp. 1044-1046, 2015.
[14]N. Jiang, H. Zhu, K. Bao Y. Hu, “Simultaneous discrimination of strain and temperature using dual-gratings in one fiber,” Optik-International Journal for Light and Electron Optics, Vol. 126, No. 23, pp. 3974-3977, 2015.
[15]J. An, M. Sun, H. Liang Y. Jin, “Curvature sensor based on a pressure-induced birefringence single mode fiber loop mirror,” Optik-International Journal for Light and Electron Optics, Vol. 125, No. 13, pp. 3228-3230, 2014.
[16]R. Maaskant, T. Alavie, G. Tadros, S. Rizkalla A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cement and Concrete Composites, Vol. 19, No. 1, pp. 21-33, 1997.
[17]J. Wu W. Sansen, “Electrochemical time of flight flow sensor,” Sensors and Actuators A: Physical, Vol. 97, pp. 68-74, 2002.
[18]Z. C. Liu, F. W. Sun F. M. Meng, “Effect of Wind Speed to Water Mist in Coal Mine Laneway,” Journal, Vol. 71, pp. 4935-4938, 2011.
[19]J. B. Elsner, J. P. Kossin T. H. Jagger, “The increasing intensity of the strongest tropical cyclones,” Nature, Vol. 455, No. 7209, pp. 92, 2008.
[20]G.-M. Ma, C.-R. Li, J. Jiang, J.-Y. Liang, Y.-T. Luo Y.-C. Cheng, “A passive optical fiber anemometer for wind speed measurement on high-voltage overhead transmission lines,” IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 2, pp. 539-544, 2012.
[21]劉民允,三杯式風速計之氣動力研究及設計應用,中華科技大學,2010。
[22]R. J. Adamec D. V. Thiel, “Self heated thermo-resistive element hot wire anemometer,” IEEE Sensors Journal, Vol. 10, No. 4, pp. 847-848, 2010.
[23]G. A. Rahardi, M. Rivai D. Purwanto, “Implementation of Hot-Wire Anemometer on Olfactory Mobile Robot to Localize Gas Source,” International Conference on Information and Communications Technology, pp. 412-417, 2018.
[24]L. Araujo, S. Catunda, C. Dorea R. Freire, “A controlled-temperature hot-wire anemometer with voltage feedback linearization,” Journal, pp. 325-330, 2014.
[25]呂冠樺,應用 MEMS 熱膜感測器於三維風速計設計,成功大學航空太空工程學系學位論文,pp. 1-117,2008。
[26]李冬梅,郑永超,潘静岩,谢亚峰,董光焰,“相干多普勒激光测风雷达系统研究”,光学技术,No. 6,pp. 880-884,2010。
[27]R. Dyott, “The fibre-optic Doppler anemometer,” IEEE Journal on Microwaves, Vol. 2, No. 1, pp. 13-18, 1978.
[28]R. Lockey R. Tatam, “Multicomponent time-division-multiplexed optical fibre laser Doppler anemometry,” IEEE Proceedings-Optoelectronics, Vol. 144, No. 3, pp. 168-175, 1997.
[29]X. Dong, Y. Zhou, W. Zhou, J. Cheng Z. Su, “Compact anemometer using silver-coated fiber Bragg grating,” IEEE Photonics Journal, Vol. 4, No. 5, pp. 1381-1386, 2012.
[30]L.-H. Cho, C. Lu, A. P. Zhang H.-Y. Tam, “Fiber Bragg grating anemometer with reduced pump power-dependency,” IEEE Photonics Technology Letters, Vol. 25, No. 24, pp. 2450-2453, 2013.
[31]X. Wang, X. Dong, Y. Zhou, Y. Li, J. Cheng Z. Chen, “Optical fiber anemometer using silver-coated fiber Bragg grating and bitaper,” Sensors and Actuators A: Physical, Vol. 214, pp. 230-233, 2014.
[32]J. Cheng, W. Zhu, Z. Huang P. Hu, “Experimental and simulation study on thermal gas flowmeter based on fiber Bragg grating coated with silver film,” Sensors and Actuators A: Physical, Vol. 228, pp. 23-27, 2015.
[33]J. Wang, Z.-Y. Liu , A. P. Zhang, Y.-H. Shen H.-Y. Tam, “Fiber-Optic Anemometer Based on Bragg Grating Inscribed in Metal-Filled Microstructured Optical Fiber,” Journal of Lightwave Technology, Vol. 34, No. 21, pp. 4884-4889, 2016.
[34]Z. Shaohui, M. Qinghao, W. Kai Z. Ming, “A Two-Dimensional Optical-Fiber Wind Speed and Direction Sensor,” Journal, pp. 139-142, 2013.
[35]P. Wang, Y. Zhao, Y. Yang D.-j. Bi, “Research on a novel variable-area optical fiber gas flow sensor,” Sensors and Actuators A: Physical, Vol. 221, pp. 29-32, 2015.
[36]L. J. Cashdollar K. P. Chen, “Fiber Bragg grating flow sensors powered by in-fiber light,” IEEE Sensors Journal, Vol. 5, No. 6, pp. 1327-1331, 2005.
[37]Y. Zhao, Y.-F. Gu, R.-Q. Lv Y. Yang, “A Small Probe-Type Flowmeter Based on the Differential Fiber Bragg Grating Measurement Method,” IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 3, pp. 502-507, 2017.
[38]B. Zhou, Z. Chen, Y. Zhang, S. Gao S. He, “Active fiber gas sensor for methane detecting based on a laser heated fiber Bragg grating,” IEEE Photonics Technology Letters, Vol. 26, No. 11, pp. 1069-1072, 2014.
[39]S. Takashima, H. Asanuma H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sensors and Actuators A: Physical, Vol. 116, No. 1, pp. 66-74, 2004.
[40]S. Thekkethil, K. R. Roy, R. Thomas, H. Neumann R. Ramalingam, “Mathematical Model for a Novel Cryogenic Flow Sensor Using Fibre Bragg Gratings,” Procedia Technology, Vol. 24, pp. 477-484, 2016.
[41]C.-L. Lee, K.-W. Liu, S.-H. Luo, M.-S. Wu C.-T. Ma, “A Hot-Polymer Fiber Fabry–Perot Interferometer Anemometer for Sensing Airflow,” Sensors, Vol. 17, No. 9, pp. 2015, 2017.
[42]P. P. Kirwan, D. Creighton, C. Costello, T. P. O’Brien K. W. Moloney, “Momentum Change Flow Meter With Pressure Compensation Using FBGs,” IEEE Sensors Journal, Vol. 16, No. 19, pp. 7061-7064, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top