跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林明諺
研究生(外文):LIN, MING-YEN
論文名稱:以微波誘導去除煉油工業油泥有害物質之研究
論文名稱(外文):Research of Removing Hazardous Substance in Oil Sludge of Refining Industry by Microwave-Induced.
指導教授:周志儒周志儒引用關係
指導教授(外文):JOU, CHIH-JU
口試委員:林啟燦戴華山蔡宗岳
口試委員(外文):LIN, CHI-TSANTAI, HUA-SHANTSAI, TSUNG-YUEH
口試日期:2018-06-12
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:98
中文關鍵詞:微波油泥有害事業廢棄物BTEX
外文關鍵詞:MicrowaveOil SludgeHazardous Industrial WasteBTEX
相關次數:
  • 被引用被引用:1
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
石油煉製業之原油貯槽之槽底沈降物(油泥)中常見之有害物質為BTEX(苯、甲苯、乙苯、二甲苯)。有害事業廢棄物認定標準中,油泥歸類為製程有害事業廢棄物,其有害特性為苯。本研究取油泥10 g以微波作為處理方式,探討在微波能量誘導下,對油泥中BTEX去除之影響。藉由微波選擇與油泥中高介電常數物質偶合之特性,將其吸收微波能量轉換為熱能,進而提供去除有害物質所需之能量。研究結果顯示,微波功率由200 W增加至300 W,照射時間60 sec,油泥於微波照射下所產生的電場強度由12.07 V/m增加為13.78 V/m,物質吸收電場平均能量由0.17 W/cm3增加至0.31 W/cm3。此外,在微波功率300W,條件10/10總照射時間900 sec顯示,去除率分別為98.5%(苯)、62.9%(甲苯)、51.6%(乙苯)、29.9%(二甲苯);經微波處理後苯含量低於法規之標準。本研究結果顯示,利用微波可作為去除油泥中有害物質之處理方式。
BTEX (Benzene,Toluene,Ethylbenzene,Xylene) is Contained in the Bottom Sediment (Oil Sludge) of the Crude Oil Tank in the Petroleum Refining Industry, so the Oil Sludge is Classified as a Hazardous Industrial Waste of Manufactured hazardous industrial waste. In This Study, the Effect of Microwave Energy on the Removal Rate of BTEX in Oil Sludge was Investigated. By Coupling Microwave Selection with High Dielectric Constant Medium in Oil Sludge, Microwave Energy Absorption is Converted into Heat Energy to Provide the Energy Needed to Remove Hazardous Substances. The Results Showed that When Microwave Power was Increased from 200 to 300W, Irradiation Time was under 60 sec, the Electric Field Intensity of Oil Sludge under Microwave Irradiation Increased from 12.07 to 13.78 V/m under Microwave Irradiation. The Average Energy of the Absorbed Electric Field Increased from 0.17 to 0.31W/cm3 and the Temperature Increased from 66.5 to 96.5℃(Heating Rate: 0.69 to 1.19 ℃/sec). In Addition, at the Microwave Power of 300W and the Total Irradiation Time of 900 sec, It Showed that the Removal Rates were 98.5% for Benzene, 62.9% for Toluene, 51.6% for Ethylbenzene and 29.9% for Xylene. and the Amount of BTEX was Lower than the Standard of the Regulation after Microwave Treatment. The Results Show that Microwave can be used to Remove Hazardous Substances from Oil Sludge.
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
一、緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 3
二、文獻回顧 4
2.1油泥介紹 4
2.1.1石油煉製工業與相關產業油泥產出量 4
2.1.2有害事業廢棄物認定標準 5
2.1.3苯環芳香族之介紹 8
2.1.4油泥的形成 9
2.1.5油泥的組成 9
2.1.5.1油泥中重金屬含量 11
2.1.6油泥對環境帶來的影響 12
2.1.7油泥處理相關技術 12
2.1.7.1手動清潔 12
2.1.7.2溶劑萃取法 13
2.1.7.3熱系統(Thermal systems) 13
2.1.7.4焚化(Incineration) 14
2.1.7.5熱脫附(Thermal Desorption) 14
2.2微波介紹 14
2.2.1微波原理 15
2.2.2影響介質吸收微波因素 17
2.2.3微波機制 17
2.2.4微波與傳統加熱之差異 21
2.2.5微波用於油泥的處理 22
三、實驗設備與方法 24
3.1實驗設備及藥品 24
3.2實驗分析儀器 25
3.2.1氣相層析質譜儀(GC-MS) 25
3.2.2感應耦合電漿原子發射光譜儀 25
3.2.3手持式氣態空氣污染物之量測儀-火焰式離子偵測器 26
3.3實驗流程 26
3.4實驗方法 28
3.4.1建立分析BTEX之檢量線及濃度範圍 28
3.4.2油泥中BTEX及液/氣相產物定量定性分析 31
3.4.3油泥三成分 32
3.4.3.1水分 32
3.4.3.2灰分 32
3.4.4熱值分析 33
3.4.5重金屬含量分析 33
3.4.6微波輻射對油泥中TVOCs之試驗 33
3.4.7微波輻射能量對油泥之影響 34
3.4.8微波輻射油泥對BTEX去除之試驗 34
3.4.9微波前/後油泥中BTEX及TVOCs之試驗 35
四、結果與討論 36
4.1油泥吸收微波能量之探討 36
4.2微波能量對油泥溫度變化之探討 42
4.3微波能量對油泥中TVOCs變化之探討 46
4.4微波能量對油泥中BTEX去除效益之探討 49
4.5油泥氣/液相產物定性分析 56
4.6微波處理前/後油泥中TVOCs及BTEX濃度變化之探討 57
4.6.1微波處理前TVOCs濃度變化之探討 57
4.6.2微波處理後TVOCs濃度變化之探討 59
4.6.3微波處理前BTEX逸散濃度變化之探討 61
4.6.4微波處理後BTEX逸散濃度變化之探討 65
4.7油泥物性分析 68
4.7.1油泥三成分及熱值分析 68
4.7.2油泥中重金屬含量分析 70
五、結論與建議 71
5.1結論 71
5.2建議 72
六、參考文獻 73
附錄一 萃取油泥之液體產物定性分析 79
附錄二 油泥之氣體產物定性分析 83

表目錄
表 2-1 2012-2013年油泥佔總廢棄物產生量 4
表 2-2 製程有害事業廢棄物 6
表 2-3 油泥中有害物質對應IARC之分類 7
表 3-1 實驗用設備 24
表 3-2 實驗用藥品 24
表 3-3 GC/MS升溫程序 25
表 3-4 油泥中單環芳香烴特性 28
表 4-1 油泥三成分及熱值分析 69
表 4-2 油泥經微波後之熱值分析(cal/g) 69

圖目錄
圖 2-1 W/O型乳液示意圖 10
圖 2-2 微波吸收材料的類別 16
圖 2-3 介電損耗因子及不同材料對微波吸收功率的影響 16
圖 2-4 電磁光譜範圍 16
圖 2-5 材料受微波後產生的離子傳導及偶極轉動之示意圖 20
圖 3-1 實驗流程圖 27
圖 3-2 BTEX定性圖譜 29
圖 3-3 BTEX之檢量線 30
圖 3-4 油泥中BTEX含量 31
圖 4-1 不同微波功率及照射時間下溫度之變化 39
圖 4-2 不同微波功率及照射時間下物質體積平均吸收能量之影響 39
圖 4-3 油泥經不同微波功率及時間下介電常數之變化 40
圖 4-4 油泥經不同微波功率及時間下介電損耗因子之變化 40
圖 4-5 油泥經微波照射時間下密度之變化 41
圖 4-6 油泥經微波照射下物質熱容量之變化 41
圖 4-7 微波10 SEC,間隔20 SEC之溫度變化趨勢 44
圖 4-8 微波10 SEC,間隔10 SEC之溫度變化趨勢 44
圖 4-9 不同微波照射條件後平均溫度之差異 45
圖 4-10 微波10 SEC,間隔20 SEC之TVOCS趨勢 47
圖 4-11 微波10 SEC,間隔10 SEC之TVOCS趨勢 47
圖 4-12 經微波後總量及平均TVOCS之濃度 48
圖 4-13 微波10 SEC,間隔20 SEC苯之去除率 52
圖 4-14 微波10 SEC,間隔10 SEC苯之去除率 52
圖 4-15 微波10 SEC,間隔20 SEC甲苯之去除率 53
圖 4-16 微波10 SEC,間隔10 SEC甲苯之去除率 53
圖 4-17 微波10 SEC,間隔20 SEC乙苯之去除率 54
圖 4-18 微波10 SEC,間隔10 SEC乙苯之去除率 54
圖 4-19 微波10 SEC,間隔20 SEC二甲苯之去除率 55
圖 4-20 微波10 SEC,間隔10 SEC二甲苯之去除率 55
圖 4-21 微波處理前TVOCS濃度之變化 58
圖 4-22 微波處理前TVOCS總量及平均濃度 58
圖 4-23 微波處理後TVOCS濃度之變化 60
圖 4-24 微波處理後TVOCS總量及平均濃度 60
圖 4-25 微波處理前苯逸散濃度之變化 63
圖 4-26 微波處理前甲苯逸散濃度之變化 63
圖 4-27 微波處理前乙苯逸散濃度之變化 64
圖 4-28 微波處理前二甲苯逸散濃度之變化 64
圖 4-29 微波處理後苯之逸散濃度 66
圖 4-30 微波處理後甲苯之逸散濃度 66
圖 4-31 微波處理後乙苯之逸散濃度 67
圖 4-32 微波處理後二甲苯之逸散濃度 67
圖 4-33微波照射前/後油泥之外觀 69






API, API Environmental Guidance Document: Onshore Solid Waste Man-agement in Exploration and Production Operations, American Petroleum Institute (API), Washington DC, 1989.
API, Category Assessment Document for Reclaimed Petroleum Hydrocarbons:Residual Hydrocarbon Wastes from Petroleum Refining. U.S. EPA HPV Chal-lenge Program, American Petroleum Institute (API), Washington DC, 2010.
Abdulbari, H. A., Abdurahman, N. H., Rosli, Y. M., Mahmood, W. K., & Azhari, H. N. (2011). Demulsification of petroleum emulsions using microwave separation method. International Journal of the Physical Sciences, 6(23), 5376-5382.
Admon, S., Green, M., & Avnimelech, Y. (2001). Biodegradation Kinetics of Hydrocarbons in Soil during Land Treatment of Oily Sludge. Bioremediation Journal, 5(3), 193-209.
Akbari, S., Nour, A. H., Fayaz, F., Halimi, M. S., & Nazari, A. (2016). Analysis of Microwave Heating Process for Demulsification of Water-in-Crude Oil Emulsions. Australian Journal of Basic and Applied Sciences, 10(17), 1-10.
Al-Mutairi, N., Bufarsan, A., & Al-Rukaibi, F. (2008). Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere, 74(1), 142-148.
Ali, M. F., & Alqam, M. H. (2000). The role of asphaltenes, resins and other solids in the stabilization of water. Fuel, 79, 1309–1316.
Ávila‐Chávez, M. A., Eustaquio‐Rincón, R., Reza, J., & Trejo, A. (2007). Extraction of Hydrocarbons from Crude Oil Tank Bottom Sludges using Supercritical Ethane. Separation Science and Technology, 42(10), 2327-2345.
Bansal, K. M., & Sugiarto, S. (1997). Exploration and Production Operations - Waste Management A Comparative Overview: US and Indonesia Cases.
Bilbao-Sáinz, C., Butler, M., Weaver, T., & Bent, J. (2007). Wheat starch gelatinization under microwave irradiation and conduction heating. Carbohydrate Polymers, 69(2), 224-232.
Chan, C.-C., & Chen, Y.-C. (2002). Demulsification of W/O Emulsions by Microwave Radiation. Separation Science and Technology, 37(15), 3407-3420.
Chang, C.-Y., Shie, J.-L., Lin, J.-P., Wu, C.-H., Lee, D.-J., & Chang, C.-F. (2000). Major Products Obtained from the Pyrolysis of Oil Sludge. Energy& Fuels, 14, 1176-1183.
Chen, M., J. Siochi, E., C. Ward, T., & E. McGrath, J. (1993). Basic ideas of microwave processing of polymers. Polymer Engineering and Science, 33, 1092-1109.
Chien, Y. C. (2012). Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy. J Hazard Mater, 199-200, 457-461.
da Rocha, O. R. S., Dantas, R. F., Duarte, M. M. M. B., Duarte, M. M. L., & da Silva, V. L. (2010). Oil sludge treatment by photocatalysis applying black and white light. Chemical Engineering Journal, 157(1), 80-85.
EPA, Resource Conservation and Recovery Act: Hazardous Waste Regulations:Identification and Listing of Hazardous Waste, U.S. Environmental ProtectionAgency (EPA), Washington DC, 1980.
Elektorowicz, M., & Habibi, S. (2005). Sustainable waste management: recovery of fuels from petroleum sludge. Canadian Journal of Civil Engineering, 32(1), 164-169.
Fang, C. S., & Lai, P. M. C. (1995). Microwave Heating and Separation of Water-in-Oil Emulsions. Journal of Microwave Power and Electromagnetic Energy, 30(1), 46-57.
Ferrari, M. D., Neirotti, E., Albornoz, C., Mostazo, M. R., & Cozzo, M. (1996 ). Biotreatment Of Hydrocarbons From Petroleum Tank Bottom Sludge In Soil Slurries. Biotechnology Lettes, 18(11), 1241-1246.
Fortuny, M., Oliveira, C. B. Z., Melo, R. L. F. V., Nele, M., Coutinho, R. C. C., & Santos, A. F. (2007). Effect of Salinity, Temperature, Water Content, and pH on the Microwave Demulsification of Crude Oil Emulsions. Energy & Fuels, 21(3), 1358-1364.
Galinada, W. A., & Guiochon, G. (2005). Effect of microwave dielectric heating on intraparticle diffusion in reversed-phase liquid chromatography. Journal of Chromatography A, 1089(1-2), 125-134.
Heath, G. M., Heath, R. A., & Dundr, Z. (2004). Paraffinic sludge reduction in crude oil storage tanks through the use of shearing and resuspension. Acta Montanistica Slovaca, 9(3), 184-188.
Hu, G., Li, J., & Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater, 261, 470-490.
Hu, J., Gan, J., Li, J., Luo, Y., Wang, G., Wu, L., & Gong, Y. (2017). Extraction of crude oil from petrochemical sludge: Characterization of products using thermogravimetric analysis. Fuel, 188, 166-172.
JEAN, D. S., LEE, D. J., & WU, J. C. S. (1999). Separation of oil from oily sludge by freezing and thawing. Water Research, 33(7), 1756-1759.
Jiang, H., Li, M., Qi, H., & Wang, Y. (2016). The Remediation of Petroleum Contaminated Soils Using Microwave Irradiation: A Laboratory Study. Journal of Residuals Science and Technology, 13(S1), S133-S141.
Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2002). Microwave heating applications in environmental engineering—a review. Resources, Conservation and Recycling, 34, 75-90.
Kawala, Z., & Atamańczuk, T. (1998). Microwave-Enhanced Thermal Decontamination of Soil. Sci. Technol, 32, 2602-2607.
Kellems, B. L., Slocum, R. W., & Kavanaugh, M. C. (1991). Alternatives for Closure of Solid Oily Waste Sites on the North Slope of Alaska.
Klaila, W. J. (1978). Method and apparatus for controlling fluency of high viscosity hydrocarbon fluids. In. U.S. Patent: 4067683.
Komarov, V., Wang, S., & Tang, J. (2005). Permittivity and Measurements. In Encyclopedia of RF and Microwave Engineering (pp. 3693-3711): John Wiley & Sons, Inc.
Kumar, B., & Mohan, D. R. (2013). Petroleum Oily Sludge and The Prospects of Microwave for Its Remediation. International Journal of Engineering Research & Technology, 2(11), 359-370.
Kuo, C.-H., & Lee, C.-L. (2010). Treatment of oil/water emulsions using seawater-assisted microwave irradiation. Separation and Purification Technology, 74(3), 288-293.
Lam, S. S., & Chase, H. A. (2012). A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies, 5(12), 4209-4232.
Lesaint, C., Spets, Ø., Glomm, W. R., Simon, S., & Sjöblom, J. (2010). Dielectric response as a function of viscosity for two crude oils with different conductivities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369(1-3), 20-26.
Ludlow-Palafox, C., & Chase, H. (2001). Microwave-Induced Pyrolysis of Plastic Wastes. Industrial & Engineering Chemistry Research, 40, 4749-4756.
Marken, F., Sur, U. K., Coles, B. A., & Compton, R. G. (2006). Focused microwaves in electrochemical processes. Electrochimica Acta, 51(11), 2195-2203.
Marland, S., Merchant, A., & Rowson, N. (2001). Dielectric properties of coal. Fuel, 80, 1839-1849.
Martínez-Palou, R., Cerón-Camacho, R., Chávez, B., Vallejo, A. A., Villanueva-Negrete, D., Castellanos, J., . . . Aburto, J. (2013). Demulsification of heavy crude oil-in-water emulsions: A comparative study between microwave and thermal heating. Fuel, 113, 407-414.
Marín, J. A., Moreno, J. L., Hernández, T., & García, C. (2006). Bioremediation by Composting of Heavy Oil Refinery Sludge in Semiarid Conditions. Biodegradation, 17(3), 251-261.
Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91(1), 1-8.
Mijović, J., & Wijaya, J. (1990). Review of cure of polymers and composites by microwave energy. Polymer Composites, 11, 184-191.
Mozafari, M., & Nasri, Z. (2017). Operational conditions effects on Iranian heavy oil upgrading using microwave irradiation. Journal of Petroleum Science and Engineering, 151, 40-48.
Mrayyan, B., & Battikhi, M. N. (2005). Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge. Journal of Hazardous Materials, 120(1-3), 127-134.
Nour, A., H, N., & Yunus Rosli, M. (2006). A Continuous Microwave Heating of Water-in-Oil Emulsions: An Experimental Study. Journal of applied sciences, 6(8), 1868-1872.
Osepchuk, J. M. (2002). Microwave Power Applications. IEEE Transactions on Microwave Theory and Techniques, 50(3), 975-985.
Ramaswamy, B., Kar, D. D., & De, S. (2007). A study on recovery of oil from sludge containing oil using froth flotation. Journal of Environmental Management, 85(1), 150-154.
Reddy, M. V., Devi, M. P., Chandrasekhar, K., Goud, R. K., & Mohan, S. V. (2011). Aerobic remediation of petroleum sludge through soil supplementation: microbial community analysis. Journal of Hazardous Materials, 197, 80-87.
Robinson, J. P., Snape, C. E., Kingman, S. W., & Shang, H. (2008). Thermal desorption and pyrolysis of oil contaminated drill cuttings by microwave heating. Journal of Analytical and Applied Pyrolysis, 81(1), 27-32.
Shang, H., Du, W., Liu, Z., & Zhang, H. (2013). Development of microwave induced hydrodesulfurization of petroleum streams: A review. Journal of Industrial and Engineering Chemistry, 19(4), 1061-1068.
Shang, H., Liu, Y., Shi, J.-C., Shi, Q., & Zhang, W.-H. (2016). Microwave-assisted nickel and vanadium removal from crude oil. Fuel Processing Technology, 142, 250-257.
Shang, H., Snape, C. E., Kingman, S. W., & Robinson, J. P. (2006). Microwave treatment of oil-contaminated North Sea drill cuttings in a high power multimode cavity. Separation and Purification Technology, 49(1), 84-90.
Shie, J.-L., Chang, C.-Y., Lin, J.-P., Wu, C.-H., & Lee, D.-J. (2000). Resources recovery of oil sludge by pyrolysis kinetics study. Journal of Chemical Technology and Biotechnology, 75, 443-450.
Silva, D. C., Silva, A. A., Melo, C. F., & Marques, M. R. C. (2017). Production of oil with potential energetic use by catalytic co-pyrolysis of oil sludge from offshore petroleum industry. Journal of Analytical and Applied Pyrolysis, 124, 290-297.
Suleimanov, R. R., Gabbasova, I. M., & Sitdikov, R. N. (2005). Changes in the properties of oily gray forest soil during biological reclamation. Biology Bulletin, 32(1), 93-99.
Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2018). Analysis of the asphaltene properties of heavy crude oil under ultrasonic and microwave irradiation. Journal of Analytical and Applied Pyrolysis, 129, 171-180.
Tan, W., Yang, X. G., & Tan, X. F. (2007). Study on Demulsification of Crude Oil Emulsions by Microwave Chemical Method. Separation Science and Technology, 42(6), 1367-1377.
Thostenson, E. T., & Chou, T.-W. (1999). Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30, 1055-1071.
Tyagi, V. K., & Lo, S.-L. (2013). Microwave irradiation: A sustainable way for sludge treatment and resource recovery. Renewable and Sustainable Energy Reviews, 18, 288-305.
Van Hamme, J. D., Odumeru, J. A., & Ward, O. P. (2000). Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Canadian Journal of Microbiology, 46(5), 441-450.
Venkatesh, M. S., & Raghavan, G. S. V. (2004). An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials. Biosystems Engineering, 88(1), 1-18.
Vorster, W., Rowson, N. A., & Kingman, S. W. (2001). The effect of microwave radiation upon the processing of Neves Corvo copper ore. International Journal of Mineral Processing, 63, 29-44.
Wang, X., Wang, Q., Wang, S., Li, F., & Guo, G. (2012). Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol, 111, 308-315.
Ward, O., Singh, A., & Van Hamme, J. (2003). Accelerated Biodegradation of Petroleum Hydrocarbon Waste (Vol. 30).
Wolf, N. O. (1986). Use of microwave radiation in separating emulsions and dispersions of hydrocarbons and water. In. US Patent: 4582629.
Wong, S. F., Lim, J. S., & Dol, S. S. (2015). Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions. Journal of Petroleum Science and Engineering, 135, 498-504.
Xia, L., Cao, G., Lu, S., Liu, Q., & Tong, S. (2006). Demulsification of Solids‐Stabilized Emulsions Under Microwave Radiation. Journal of Macromolecular Science, Part A, 43(1), 71-81.
Xia, L., Lu, S., & Cao, G. (2003). Demulsification of Emulsions Exploited by Enhanced Oil Recovery System. Separation Science and Technology, 38(16), 4079-4094.
Xu, N., Wang, W., Han, P., & Lu, X. (2009). Effects of ultrasound on oily sludge deoiling. J Hazard Mater, 171(1-3), 914-917.
Zhang, X., & Hayward, D. O. (2006). Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorganica Chimica Acta, 359(11), 3421-3433.
Zhao, J., Dong, H., Wang, X., & Fu, X. (2017). Research on heat transfer characteristic of crude oil during the tubular heating process in the floating roof tank. Case Studies in Thermal Engineering, 10, 142-153.
Zubaidy, E. A. H., & Abouelnasr, D. M. (2010). Fuel recovery from waste oily sludge using solvent extraction. Process Safety and Environmental Protection, 88, 318-326.
謝哲隆(2001),油污泥熱處理資源化研究,台灣大學環境工程研究所,博士論文。
台灣中油股份有限公司,2012-2013,台灣中油股份有限公司永續報告書( Corporate Sustainability Report, CSR)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top