跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張憶琳
研究生(外文):CHANG, I-LIN
論文名稱:應用電泳沉積-薄膜(EPDM)程序回收水中重金屬之可行性研究
論文名稱(外文):Feasibility study on recovery of heavy metals from wastewater by using electrophoretic deposition - membrane (EPDM) processes
指導教授:洪崇軒洪崇軒引用關係
指導教授(外文):HUNG, CHUNG-HSUANG
口試委員:賴俊吉蔡宗岳
口試委員(外文):LAI, JYUN-JICAI, ZONG-YUE
口試日期:2018-07-05
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程系碩士專班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:105
中文關鍵詞:重金屬廢水處理電泳沉積陽離子交換膜操作條件
外文關鍵詞:Wastewater treatment of heavy metalselectrophoretic depositionCation exchange membraneoperating conditions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨針對含重金屬離子廢水,探討應用電泳沉積-薄膜(Electrophoretic deposition - membrane, EPDM)程序,回收水中重金屬離子之可行性研究。EPD係一種藉由外加電動勢的協助,來促進水中離子傳移至特定電極而沉積的程序,此類程序對於水中溶解鹽類或膠體物質,具有促進凝聚沉積的作用,可獲得較高品質(純度)沉積物,有利於資源物質的循環利用;而薄膜程序則具有分離及濃縮作用,可選擇性地分離濃縮陰、陽離子。本研究以人工含重金屬廢液(硫酸銅及硫酸亞鐵),配合以不銹鋼編織網(陰極)及鈦鈑(陽極),並以質子交換膜隔離陰陽極兩端,在施加電壓下,促使金屬離子沉積在不鏽鋼編織網上,可藉以回收高品質的金屬離子。
研究結果顯示:金屬氫氧化物的沉積效能,與溶液種類、濃度、操作電壓等操作條件有關,可針對不同金屬離子或鹽類離子,篩選出較佳的鹽類沉積條件,供產業界參考;以不同電壓(2 V~10 V)處理硫酸銅廢液試驗結果發現,陽極端的銅離子下降,但陰極端銅離子濃度上升。外加電壓,搭配陽離子交換膜,可將銅離子誘導至陰極端,可促使陽離子端溶液中的銅離子濃度減少;就反應終了的成果而言,於pH=13環境下,施加4 V及8 V電壓條件下,對於銅離子去除效率達50%以上;pH=7時,施加4 V~10 V之電壓對於銅離子去除效率達50%以上,並以8 V之去除效率最高。
本研究進一步針對陽離子交換膜及不銹鋼編織網,進行場發射型掃描式電子顯微鏡(SEM)及能量色散X-射線光譜(EDS)掃描鑑定沉積物的特性,結果發現兩者表面皆有明顯的結晶物產生,呈現方型或不規則結晶型態,其主要是銅、鐵金屬結晶物;此外,在相同濃度下,不同pH值(pH=2、7、13)環境中,利用循環伏安法所測量到的CV曲線圖,以pH= 2的電流密度高於pH= 7及13。其原因可能為調配pH值時,氫氧化鈉溶液中之氫離子濃度增加,導致電流密度較高,在相同pH,不同濃度(0.005 M、0.004 M、0.003 M、0.002 M)環境下所量測到的CV曲線圖,以0.005 M之電流密度最高,應與離子含量較高,導致電流密度較高有關。
A feasibility study of applying electrophoretic deposition- membrane (EPDM) processes to recover heavy metals form metal-containing wastewater was investigated. EPD system facilitates the transfer of ions from aqueous phases to specific electrodes by providing an additional electromotive force. The assistance by an additional selective membrane separation process to EPD process, named as EPDM, can selectively separate and concentrate both anions and cations for further producing better quality crystallization products. In this study, an artificial wastewater containing copper sulfate or ferrous sulfate was prepared as the target wastewater. Both cathode, stainless steel woven mesh, and anode, titanium sheet, were separated by a proton exchange membrane. Metal ions are deposited on the stainless steel woven mesh and cathode while an external bias was applied.
Some important results were achieved in the study. The experimental results indicated that both metals, copper and iron, are immobilized on the stainless steel wove mesh and cathode as metal hydroxides, which is confirmed by performing field emission scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) scanning. Higher deposition rates for the metals are observed in higher pH conditions and external biases. Compared in the pH= 7 solution, the removal ratios of both metals from the prepared wastewater were enhanced by 0.5 fold in the pH= 11 solution. Similar results were also observed by the external bias of 8.0 V than by 4.0 V. This study successfully demonstrates the EPDM process can produce metal hydroxides with high purity, which is not only benefit for producing less metal-containing sludge, but also good for metal recycling.
摘要 I
Abstract III
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1研究緣起 1
1-2研究目的 2
第二章 文獻回顧 4
2-1電化學反應系統特性 4
2-1-1電凝聚(EC)程序 4
2-1-2電透析(ED)程序 6
2-1-3循環伏安法 7
2-1-4隔膜電解 9
2-1-5電泳沉積原理 9
2-1-6懸浮液種類 14
2-1-7粒子電荷來源 15
2-1-8膠體粒子的分散 15
2-1-9影響電泳速度的因素 16
2-2薄膜應用程序 17
2-3離子交換技術 20
2-4結晶程序 23
2-4-1成核現象 23
2-4-2核成長現象 26
第三章 研究方法與材料 27
3-1實驗內容與規劃 27
3-1-1研究概要 27
3-1-2研究流程 27
3-2實驗材料與設備 29
3-2-1實驗藥品 29
3-2-2實驗材料及儀器設備 29
3-2-2-1火焰式原子吸收光譜儀(Atomic Absorption Spectrometer) 31
3-2-2-2掃描式電子顯微鏡(SEM) 33
3-2-2-3 X光繞射儀(X-Ray diffraction, XRD) 34
3-2-2-4電泳沉積-薄膜反應系統(electrophoretic deposition-membrane,EPDM) 35
3-3實驗方法與分析 36
3-3-1循環伏安法分析 36
3-3-2電泳沉積-薄膜反應系統試驗 37
第四章 結果與討論 38
4-1電泳沉積-薄膜反應系統處理硫酸銅廢液之成效 38
4-1-1 pH值 40
4-1-2施加電壓 44
4-1-3 去除及回收成效 49
4-2電泳沉積-薄膜反應系統處理硫酸亞鐵廢液之成效 50
4-2-1 pH值 51
4-2-2施加電壓 55
4-2-3去除及回收成效 60
4-3電泳沉積-薄膜反應系統表面形貌變化分析 60
4-3-1硫酸銅廢液試驗系統之表面形貌變化 61
4-3-2硫酸亞鐵廢液試驗系統之表面形貌變化 67
4-4電泳沉積-薄膜反應系統結晶物之XRD光譜分析 71
4-4-1硫酸銅廢液試驗系統之結晶物XRD晶相分析 71
4-4-2硫酸亞鐵廢液試驗系統之結晶物XRD晶相分析 71
4-5電泳沉積-薄膜反應系統電化學分析 72
4-5-1硫酸銅廢液CV掃描結果 72
4-5-2硫酸亞鐵廢液CV掃描結果 77
4-6電泳沉積-薄膜程序之效益評估 82
4-7電泳沉積-薄膜程序之可行性說明 84
第五章 結論與建議 86
5-1結論 86
5-2建議事項 87
參考文獻 88
Abdel-Aal, E.A.; Dietrich, D.; Steinhaeuser, S.; Wielage, B., “Electrocrystallization of nanocrystallite calcium phosphate coatings on titanium substrate at different current densities”, Surface & Coatings Technology, 202:5895-5900(2008).
Adjeroud, N.; Elabbas, S.; Merzouk, B.; Hammoui, Y.; Felkai-Haddache, L.; Remini, H.; Leclerc, J.P.; Madani, K., “Effect of Opuntia ficus indica mucilage on copper removal from water by electrocoagulation-electroflotation technique”, Journal of Electroanalytical Chemistry, 811:26-36(2017).
Bazinet, L.; Araya-Farias, M., “Effect of calcium and carbonate concentrations on cationic membrane fouling during electrodialysis”, Journal of Colloid and Interface Science, 281:188-196(2005).
Bojic, A.L.; Bojic, D.; Andjelkovic, T., “Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reduction–coagulation process in flow conditions”, Journal of Hazardous Materials, 168:813-819(2009).
Bunce, N.J.; Bejan, D. “Mechanism of electrochemical oxidation of ammonia”, Electrochimica Acta, 56:8085-8093(2011).
Carlos, B.D.; Bernado, F.U.; Bilyeu, B., “Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H2O2”, Chemosphere, 105:160-164(2014).
Cheng, H., “Cu (II) Removal from lithium bromide refrigerant by chemical precipitation and electrocoagulation”, Separation and Purification Technology, 52:191-195(2006).
Cifuentes-Araya, N.; Pourcelly, G.; Bazinet, L., “Multistep mineral fouling growth on a cation-exchange membrane ruled by gradual sieving effects of magnesium and carbonate ions and its delay by pulsed modes of electrodialysis”, Journal of Colloid and Interface Science, 372:2017-230(2012).
Der Biest, V., Vandeperre, L.J., “Electrophoretic deposition of material”, Annual Review of Materials Science, 29:327-352(1999).
Euvrard, M.; Membrey, F.; Filiatre, C.; Pignolet, C.; Foissy, A., “Kinetic study of the electrocrystallization of calcium carbonate on metallic substrates”, Journal of Crystal Growth, 291:428-435(2006).
Ferreira, A.M.; Marchesiello, M.; Thivel, P.X., “Removal of copper, zinc and nickel present in natural water containing Ca2+and HCO-3 ions by electrocoagulation”, Separation and Purification Technology, 107:109-117(2013).
Formeto, A.; Montanaro, L.; Swain, M.V., “Micromechanical characterization of electrophoretic-deposited green films”, Journal of the American Ceramic Society, 82:3251-3528(2004).
Gengec, E.; Kobya, M.; Demirbas, E.; Akyol, A.; Oktor, K., “Optimization of baker's yeast wastewater using response surface methodology by electrocoagulation”, Desalination, 286:200-209(2012).
Ghosh, D.; Solanki, H.; Purkait, M.K., “Removal of Fe (II) from tap water by electrocoagulation technique”, Journal of Hazardous Materials, 155:135-143(2008).
Hug, A.; Kai, M.U., “Struvite precipitation from urine with electrochemical magnesium dosage”, Water Research, 47:389-299(2013).
Ilhan, F.; Kurt, U.; Apaydin, O.; Gonullu, M.T., “Treatment of leachate by electrocoagulation using aluminum and iron electrodes”, Journal of Hazardous Materials, 154:381-389(2008).
Franz, J.A.; Williams, R.J.; Flora, J.R.V.; Meadows, M.E.; Irwin, W.G., “Electrolytic oxygen generation for subsurface delivery: effects of precipitation at the cathode and an assessment of side reactions”, Water Research, 36:2243-2254(2002).
Kannaki, K.; Ramesh, P.S.; Geetha, D., “Hydrothermal synthesis of CuO nanostructure and their characterizations”, International Journal of Scientific & Engineering Research, 3:2229-5518(2012).
Khan, T.A.; Mukhlif, A.A.; Khan, E.A., “Uptake of Cu2+ and Zn2+ from simulated wastewater using muskmelon peel biochar: Isotherm and kinetic studies”, Egyptian Journal of Basic and Applied Sciences, 4:236-248(2017).
Khatibikamal, V.; Torabian, A.; Janpoor, F.; Hoshyaripour, G., “Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics”, Journal of Hazardous Materials, 179:276-280(2010).
Ledon, H.J., “Ozone for Waste Remediation and Waste Water Treatment”, Industrial Environmental Chemistry, Elsevier Inc.(1989).
Li, M.; Feng, C.; Zhao, R.; Zhang, Z.; Liu, X.; Xue, Q.; Ma, W.; Sugiura, N, “Efficient removal of nitrate using electrochemical-ion exchange method and pretreatment of straw with by-products for biological fermentation”, Desalination, 278:275-280(2011).
Lianos, P., “Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the Photo fuel cell: A review of a re-emerging research field”, Journal of Hazardous Materials, 185:575-590(2011).
Manpreet, S.B.; Kapoor, D.; Kalia, R.K..; Reddy, A.S.; Thukral, A.K., “RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach”, Desalination, 274:74-80(2011).
Morizot, A.P.; Neville1, A., “Insights into electrodeposition of an inhibitor film and its inhibitive effects on calcium carbonate deposition”, Journal of Colloid and Interface Science, 245:40-49(2002).
Nemecek, M.; Kratochvila, J.; Kodym R.; Snita, D., “Electrodialysis”, laboratory em 8 electrodialysis, https://zh.scribd.com/document/335900996/Laboratory-Em-8-Electrodialysis.
Peyvandi, K.; Haghtalab, A.; Omidkhah, M.R., “Using an electrochemical technique to study the effective variables on morphology and deposition of CaCO3 and BaSO4 at the metal surface”, Journal of Crystal Growth, 354:108-118(2012).
Silveston, P.L.; Hudgins, R.R., “Periodic Operation of Chemical Reactors”, Elsevier In, Chapter 9 Electrochemical Processes (2013).
Rafailovi, L.D.; Karnthaler, H.P.; Trisovi, T.; Mini, D.M., “Microstructure and mechanical properties of disperse Ni–Co alloys electrodeposited on Cu substrates”, Materials Chemistry and Physics, 120:409-416(2010).
Rinat, J.; Korin, E.; Soifer L.; Bettelheim, A., “Electrocrystallization of calcium carbonate on carbon-based electrodes”, Journal of Electroanalytical Chemistry, 575:195-202 (2005).
Sajeda, A.A-S.; Muftah, H.E-N.; Syed, J.Z., “Copper removal from industrial wastewater: A comprehensive review”, Journal of Industrial and Engineering Chemistry, 56:35-44(2017).
Song, P.; Yang, Z.; Zeng, G.; Yang, X.; Xu, H.; Wang, L.; Xu, R.; Xiong, W.; Ahmad, K., “Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review”, Chemical Engineering Journal, 317:707 -725(2017).
Wang, J.S.; Colver, G.M., “Elutriation control and charge measurement of fines in a gas fluidized bed with AC and DC electric fields”, Powder Technology, 169-180(2003).
Watanabe, J.; Akashi, M. “Controlled deposition of calcium carbonate particles on porous membranes by using alternating current system”, Journal of Colloid and Interface Science, 327:44-80(2008).
Watanabe, J.; Akashi, M., “Effect of an alternating current for crystallization of CaCO3 on a porous membrane”, Acta Biomaterialia, 5: 1306-1310(2009).
Wen, X.; Zhang, W.; Yang, S., “Solution phase synthesis of Cu(OH)2 nanoribbons by coordination self-assembly using Cu2S nanowires as precursors”, Nano Letters, 12:1397-1401(2002).
Wu, L.K.; Li, Y.Y.; Cao, H.Z.; Zheng, G.Q., “Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol”, Journal of Hazardous Materials, 299:520-528(2015).
Xu, L.; Cao, G.; Xu, X.; Liu, S.; Duan, Z.; He, C.; Wang, Y.; Huang, Q., “Simultaneous removal of cadmium, zinc and manganese using electrocoagulation: Influence of operating parameters and electrolyte nature”, Journal of Environmental Management, 204:394-403(2017).
Zhang, Y.M.; D.Merrill, M.; Logan, B.E., “The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells”, International Journal of Hydrogen Energy, 35:12020-12028(2010).
蔡明谷,「研究電透析技術處理回收重金屬廢水之物化機制及回收效率」,行政院國家科學委員會專題研究計畫,(2005)。
謝國鎔、程嬿儒、萬孟瑋、莊世享、楊惠玲、甘其銓,「運用電透析技術現地去除地下水中硝酸鹽氮之研究」,嘉南學報第三十八期,(2012)。
章日行、蔡明偉、黃文圻、唐政宏,「電對流式電透析技術處理重金屬廢水及薄膜物化特性-以含銅廢水為例」, 朝陽科技大學環境工程與管理系。
葉茂淞、鄭竹逸、陳彥旻,「中鋼廢水處理及再生技術開發」,中鋼公司新材料研究發展處,(2016)。
趙幼梅、吳政峰、楊澤沛,「已倒極式電透析(EDR)法產製高純度水技術建立與應用」,中鋼新材料研究法展處研究報告,(2005)。
電子全文 電子全文(網際網路公開日期:20230808)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top