(3.235.41.241) 您好!臺灣時間:2021/04/15 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉俊巖
研究生(外文):YEH, CHUN-YEN
論文名稱:國小Maker科技課程之發展與成效評估之研究
論文名稱(外文):The Research of the Development and Effectiveness of the Maker-and-Technology Curriculum in the Elementary School
指導教授:羅希哲羅希哲引用關係
指導教授(外文):LOU, SHI-JER
口試委員:程毓明吳思達江文鉅張美珍羅希哲
口試委員(外文):CHENG, YUH-MINGWU, SZU-TACHIANG, WEN-JUNHCHANG, MEI-CHENLOU, SHI-JER
口試日期:2018-06-28
學位類別:博士
校院名稱:國立高雄師範大學
系所名稱:工業科技教育學系
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:218
中文關鍵詞:自造者核心素養科技教育課程轉化
外文關鍵詞:MakerCore CompetenceTechnology EducationCurriculum Transformation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Maker運動讓「動手做」的議題重新受到關注,更進一步使「動手做」提升到「共同創造」的層次。目前教育實證研究的成果,賦予素養導向課程改革新的方向,但這些成果多屬單一面向,欠缺對Maker核心概念完整的論述。
故本研究之目的,先確立國小Maker教育的核心概念,據此建構國小Maker教育指標,並提出國小Maker教學模組,最後以實驗教學驗證其有效性。
為達上述目的,分三階段歷程進行,第一階段以模糊德菲法針對產、官、學、研共12位專家,透過問卷調查的方式進行國小Maker教育指標的建構;第二階段提出國小Maker課程設計模式,發展國小Maker教學模組,針對5位科技教育專家進行問卷調查,建立課程內容效度;第三階段針對國小5年級學生2個班共47人,進行16週的實驗教學,採行動研究法、測驗法、觀察法,分析學生參與國小Maker教學模組後的學習成效。
本研究歸納出下列結論:
一、本研究建構之國小Maker教育指標,含動手實踐、團隊合作與知識分享3個構面、7個向度及20個指標,適用於國小教學場域。
二、本研究發展之國小Maker教學模組,其課程內容符合國小Maker教育指標與十二年國民教育新課綱的核心素養,適合於國小高年級彈性學習課程實施。
三、國小Maker教學模組有助於學生在Maker動手實踐中的理論知識、實作應用與自造心態向度的的學習成效。
四、國小Maker教學模組有助於學生在Maker團隊合作中的個人參與和團隊互動向度的學習成效。
五、國小Maker教學模組有助於學生在Maker知識分享中的分享方式與分享動機向度的學習成效。
Because of the “Maker” movement, the topic of “do it yourself (DIY)” has regained public attention and been brought to the level of “common creation.” The empirical studies of Maker Education at present lead a brand new way in the competence-orientated curriculum reform. However, those studies emphasize the enhancement of learners’ abilities after undertaking the curriculum. Few of them have been conducted on the overall core concepts of makers.
Therefore, the purpose of this research aims to define the key competences of Maker Education, so as to construct the competence indicators of Maker Education in elementary schools. Then it develops a teaching module of Maker Education, which the effectiveness is verified through the process of action research.
The research process included three stages. First, the Fuzzy Delphi Method (FDM) was applied to collect and analyze data in the form of a questionnaire survey. The subjects were 12 experts from enterprises, governmental institutions, schools and research institutes. According to the results, the competence indicators of Maker Education were constructed. Second, the researcher developed a Maker Curriculum Model and designed the teaching module. Questionnaire to 5 experts in Technology Education were adopted to examine the validity of curriculum. 16 week teaching period is the last stage. The participants are 2 classes in the 5th grade, 47 students in total. Action research, observation survey and test method were adopted to analysis students’ learning effectiveness after the Maker teaching module.
The main results of this research can be summarized as the followings:
1.The research constructs the competence indicators of Maker Education in elementary school, which include 3 aspects (“Making”, “Collaboration” and “Knowledge sharing”), 7 factors and 20 indicators. These are applicable to elementary instructions.
2.The learning contents of Maker Teaching Module in this research are consistent with the Indicators of Maker Education in elementary schools and the core competences of Curriculum Guildlines of 12-year compulsory education. It’s recommended to be adopted in the Alternative Curriculum of senior grades in elementary schools.
3.On the aspect of “Making,” the Maker Teaching Module has an impact on students’ learning effectiveness in the following factors: “Theoretical knowledge”, “Practical application”, and “Maker’s mindset”.
4.On the aspect of “Collaboration,” the Maker Teaching Module has an effect on students’ learning effectiveness in the “Personal participation” and “Team Interaction” factors.
5.On the aspect of “Knowledge sharing,” the Maker Teaching Module has an effect on students’ learning effectiveness in the “Way of sharing” and “Motivation of sharing” factors.
目錄
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 12
第三節 名詞解釋 13
第四節 研究範圍及限制 14
第二章 文獻探討 17
第一節 Maker教育的核心概念 17
第二節 國小Maker教育指標 21
第三節 核心素養導向的課程轉換 33
第四節 科技領域的課程研究 39
第五節 Maker教育相關議題 48
第三章 研究設計與實施 61
第一節 研究概念架構 61
第二節 研究對象 64
第三節 研究方法 65
第四節 國小Maker科技課程設計內涵 68
第五節 國小Maker教學模組發展 70
第六節 研究工具 83
第七節 資料分析與處理 97
第四章 研究結果 101
第一節 國小Maker教育指標建構 101
第二節 國小Maker課程內容效度 105
第三節 Maker動手實踐構面學習成效 108
第四節 Maker團隊合作構面學習成效 138
第五節 Maker知識分享構面學習成效 142
第六節 教學省思與討論 145
第五章 結論與建議 153
第一節 結論 153
第二節 研究建議 155
參考文獻 159
附錄 175
附件一、課程活動內容Maker指標與課綱對照表 175
附件二、個人專題作品設計規劃表 188
附件三、團隊專題設計規劃表 192
附件四、國小Maker課程內容效度問卷 196
附件五、自造心態量表專家審查結果 199
附件六、團隊合作量表專家審查結果 201
附件七、知識分享量表專家審查結果 204
附件八、IoT概念性知識測驗 207
表次
表2-1 Maker指標建構文獻來源 32
表3-1 核心素養與科技領域核心素養對照表 71
表3-2 設定關鍵問題與預期結果範例 71
表3-3 教學流程表 75
表3-4 實作單元、個人作品與6E學習環對照表 76
表3-5 IoT實作單元學習單評量表 86
表3-6 IoT概念性知識測驗雙項細目表 87
表3-7 個人作品評量表 90
表3-8 個人準備度測驗與專題製作核心概念 92
表3-9 團隊作品評量表 96
表3-10 研究工具與Maker指標對應表 100
表4-1 國小Maker教育指標內容效度建構 102
表4-2 國小Maker指標與分析結果 103
表4-3 本研究課程內容效度審查結果 106
表4-4 前導組與修正組同質性檢驗 109
表4-5 前導組IoT實作單元評量表基礎概念分析 109
表4-6 前導組IoT實作學習單分析 110
表4-7 修正組IoT實作單元評量表基礎概念分析 113
表4-8 修正組實作單元3評量表基礎概念通過率 113
表4-9 前導組與修正組理論知識向度學習成效比較 114
表4-10 前導組與修正組概念性知識測驗同質性檢驗 114
表4-11 IoT概念性知識測驗得分情形分析 115
表4-12 IoT概念性知識測驗各題答對人數百分比 116
表4-13 前導組實作學習單元實作應用向度分析 122
表4-14 前導組第二單元設計規劃題目答對比率 123
表4-15 修正組實作學習單元實作應用向度分析 124
表4-16 前導組與修正組實作應用向度學習成效比較 125
表4-17 前導組在個人專題中的得分情形 129
表4-18 修正組在個人專題中的得分情形 129
表4-19 前導組與修正組實作應用向度總結性評量比較 130
表4-20 個人作品評分表描述統計 130
表4-21 團隊作品評分表設計規劃項目分析 131
表4-22 團隊作品評分表轉化應用項目分析 132
表4-23 自造心態量表敘述統計分析 135
表4-24 自造心態量表重複量數單因子變異數分析 136
表4-25 個人貢獻度與積極互賴轉換分析 138
表4-26 個人績效責任學習成效分析 139
表4-27 團隊合作量表-個人參與向度得分分析 139
表4-28 同儕評量表-團隊互動評量得分情形 140
表4-29 團隊合作量表-團隊互動向度得分情形 140
表4-30 小組與個人組備度測驗得分比較 141
表4-31 團隊作品口語分享與實作分享得分分析 142
表4-32 知識分享量表-分享方式向度得分分析 143
表4-33 知識分享量表-分享動機向度得分分析 143
圖次
圖2-1 國小Maker教育指標架構圖 32
圖2-2 逆向課程設計 42
圖2-3 物聯網網路的實際應用範例LoRa+NB-IoT 53
圖2-4 Arduino UNO 56
圖2-5 webduino smart 58
圖3-1 整體研究流程圖 61
圖3-2 第一階段研究流程圖 62
圖3-3 第二階段研究流程圖 62
圖3-4 第三階段研究流程圖 63
圖3-5 行動研究的循環模式 66
圖3-6 本研究課程設計模式 68
圖3-7 聲波的生活應用範例 77
圖3-8 聲波的傳遞影片教材 77
圖3-9 聲波傳遞的工作原理 78
圖3-10 腳位功能與線路連結範例圖 78
圖3-11 超音波傳感器與smart連結範例圖 79
圖3-12 偵測距離程式示範例 79
圖3-13 超音波傳感器程式設計延伸範例 80
圖4-1 國小Maker教育指標架構圖 104
圖4-2 修正後麵包板電路圖 110
圖4-3 超音波傳感器修正內容 111
圖4-4 超音波傳感器工作原理原始教材 112
圖4-5 超音波傳感器工作原理修正後教材 112
圖4-6 修正前 IoT架構圖 117
圖4-7 修正後 IoT架構圖 117
圖4-8 修正前超音波傳感器工作原理 118
圖4-9 加入聲音的傳導影片 118
圖4-10 倒車雷達影片 119
圖4-11 智慧燈光系統影片 123
圖4-12 序列概念常錯誤的類型 126
圖4-13 序列概念正確示範 126
圖4-14 迴圈常見錯誤類型 127
圖4-15 事件常見錯誤類型 127
圖4-16 修正組c隊遊戲設計規劃表 133
圖4-17 修正組c隊作品展示 134
圖4-18 修正組c隊作品加工 134
圖4-19 修正後國小Maker課程發展設計模式 148


Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M., & Kiah, M. L. M. (2017). A review of smart home applications based on Internet of Things. Journal of Network and Computer Applications, 97(Supplement C), 48-65. doi:https://doi.org/10.1016/j.jnca.2017.08.017
Alsharo, M., Gregg, D., & Ramirez, R. (2016). Virtual team effectiveness: The role of knowledge sharing and trust. Information & Management. doi:http://dx.doi.org/10.1016/j.im.2016.10.005
Anderson, C. (2006). 長尾理論─打破80/20法則的新經濟學 (周宜芳、胡瑋珊、李明和楊美齡,譯)。台北市:天下文化。
Anderson, C. (2013). Makers: The New Industrial Revolution New York: Crown.
Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., . . . Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives.
Arduino. (2018a). About Us. Retrieved from https://www.arduino.cc/en/Main/AboutUs
Arduino. (2018b). ARDUINO UNO REV3. Retrieved from https://store.arduino.cc/arduino-uno-rev3
Blikstein, P., & Krannich, D. (2013, June). The makers' movement and FabLabs in education: experiences, technologies, and research. Paper presented at the proceedings of the 12th International Conference on Interaction Design and Children, New York.
Bock, G.-W., Zmud, R. W., Kim, Y.-G., & Lee, J.-N. (2005). Behavioral Intention Formation in Knowledge Sharing: Examining the Roles of Extrinsic Motivators, Social-Psychological Forces, and Organizational Climate. MIS Quarterly, 29(1), 87-111. doi:10.2307/25148669
Burghardt, M. D., & Hacker, M. (2004). Informed Design: A Contemporary Approach to Design Pedagogy. The Technology Teacher, 64(1), 6-8.
Burke, B. N. (2014). The ITEEA 6E Learning by DeSIGNTM Model. Technology and Engineering Teacher, 14-19.
Bybee, R. W. (2013). The Case for STEM Education: Challenges and Opportunities. Arlington, VA: NSTA Press.
Caro-Bruce, C. (2000). Action Research Facilitator's Handbook. Available from ED472452 ERIC https://files.eric.ed.gov/fulltext/ED472452.pdf
Chang, H.-Y., Lou, S.-J., & Cheng, T.-F. (2017). The Interactive Learning of Integrating Animation Game with Kinect System for Senior with Mild Alzheimer. Journal of Computers and Applied Science Education, 4(2), 24-33.
Chu, S. L., Angello, G., Saenz, M., & Quek, F. (2017). Fun in Making: Understanding the experience of fun and learning through curriculum-based Making in the elementary school classroom. Entertainment Computing, 18, 31-40. doi:http://dx.doi.org/10.1016/j.entcom.2016.08.007
Chu, S. L., Quek, F., Bhangaonkar, S., Ging, A. B., & Sridharamurthy, K. (2015). Making the Maker: A Means-to-an-Ends approach to nurturing the Maker mindset in elementary-aged children. International Journal of Child-Computer Interaction, 5, 11-19. doi:http://dx.doi.org/10.1016/j.ijcci.2015.08.002
Cummings, J. N. (2004). Work Groups, Structural Diversity, and Knowledge Sharing in a Global Organization. Management Science, 50(3), 352-364. doi:10.1287/mnsc.1030.0134
Daft, R. L., & Lengel, R. H. (1986). Organizational Information Requirements, Media Richness and Structural Design. Management Science, 32(5), 554-571. doi:10.1287/mnsc.32.5.554
Delors, J., Al Mufti, I. a., Amagi, I., Carneiro, R., Chung, F., Geremek, B., . . . Nanzhao, Z. (1996). Learning: The treasure within. Paris, France: UNESCO.
Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to measure understanding of computer science concepts? Computers & Education, 58(1), 240-249. doi:http://dx.doi.org/10.1016/j.compedu.2011.08.006
Department for Education. (2013a). National curriculum in England: computing programmes of study. Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
Department for Education. (2013b). National curriculum in England: design and technology programmes of study. Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-england-design-and-technology-programmes-of-study/national-curriculum-in-england-design-and-technology-programmes-of-study
Dewey, J. (1938). Experience and Education. New York, NY: Macmillan.
Dougherty, D. (2011). Dale dougherty : we are maker. Retrieved from https://www.ted.com/talks/dale_dougherty_we_are_makers/transcript?language=zh-tw
Dougherty, D. (2012). The maker movement. Innovations, 7(3), 11–14.
Drăghicescu, L. M., Cristea, S., Petrescu, A.-M., Gorghiu, G., & Gorghiu, L. M. (2015). The Learning to Learn Competence - Guarantor of Personal Development. Procedia - Social and Behavioral Sciences, 191(Supplement C), 2487-2493. doi:https://doi.org/10.1016/j.sbspro.2015.04.571
Ebel, R. L., & Frisbie, D. A. (1991). Essentials of Educational Measurement (5th Edition) NJ:Englewood Cliffs: Prentice Hall.
Eid, M. I. M., & Al-Jabri, I. M. (2016). Social networking, knowledge sharing, and student learning: The case of university students. Computers & Education, 99, 14-27. doi:http://dx.doi.org/10.1016/j.compedu.2016.04.007
European Communities. (2007). Key competences for lifelong learning: European Reference Framework. Luxembourg: Publications Office of the European Union.
European Telecommunications Standards Institute. (2013). ETSI TS 102 690 V2.1.1 (2013-10) Machine-to-Machine communications (M2M);Functional architecture Retrieved from http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
Fields, D. A., Kafai, Y. B., Strommer, A., Wolf, E., & Seiner, B. (2014). Interactive storytelling for promoting creative expression in media and coding in youth online collaboratives in Scratch. Proceedings of Constructionism 19-23.
Fields, D., Vasudevan, V., & Kafai, Y. B. (2015). The programmers’ collective: fostering participatory culture by making music videos in a high school Scratch coding workshop. Interactive Learning Environments, 23(5), 613-633. doi:10.1080/10494820.2015.1065892
Ganti, R. K., Pham, N., Ahmadi, H., Nangia, S., & Abdelzaher, T. F. (2010). GreenGPS: a participatory sensing fuel-efficient maps application. Paper presented at the Proceedings of the 8th international conference on Mobile systems, applications, and services, San Francisco, California, USA.
Goodlad, J. I. (1979). Curriculum Inquiry: The Study of Curriculum Practice. New York: McGraw Hill.
Grandi, R., Falconi, R., & Melchiorri, C. (2014). Robotic Competitions: Teaching Robotics and Real-Time Programming with LEGO Mindstorms. IFAC Proceedings Volumes, 47(3), 10598-10603. doi:http://dx.doi.org/10.3182/20140824-6-ZA-1003.00222
Greiff, S., Niepel, C., & Wüstenberg, S. (2015). 21st century skills: International advancements and recent developments. Thinking Skills and Creativity, 18, 1-3. doi:https://doi.org/10.1016/j.tsc.2015.04.007
Hagel, J., Brown, J. S., & Kulasooriya, D. (2014). A movement in the making. Retrieved from https://dupress.deloitte.com/dup-us-en/topics/emerging-technologies/a-movement-in-the-making.html
Halverson, E. R., & Sheridan, K. (2014). The Maker Movement in Education. Harvard Educational Review, 84(4), 495-504. doi:10.17763/haer.84.4.34j1g68140382063
Hamalainen, M., & Karjalainen, J. (2017). Social manufacturing: When the maker movement meets interfirm production networks. Business Horizons, 60(6), 795-805. doi:https://doi.org/10.1016/j.bushor.2017.07.007
Harnett, C. K., Tretter, T. R., & Philipp, S. B. (2014, 22-25 Oct. 2014). Hackerspaces and engineering education. Paper presented at the 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.
Hatch, M. (2014). The maker movement manifesto. New York: McGraw-Hill.
Hendriks, P. (1999). Why share knowledge? The influence of ICT on the motivation for knowledge sharing. Knowledge and Process Management, 6(2), 97-100. doi:10.1002/(SICI)1099-1441(199906)6:2<91::AID-KPM54>3.0.CO;2-M
Hsu, T., & Yang, T. (2000). Application of fuzzy analytic hierarchy process in the selection of advertising media. Journal of Management and Systems, 7(1), 19-39.
Institute of Electrical and Electronics Engineers. (2015). Towards a Definition of the Internet of Things (IoT). Retrieved from https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
International Technology and Engineering Educators Association. (2007). Standards for technological literacy: Content for the study of technology. Reston, VA: Author.
International Telecommunication Union. (2005). ITU Internet Reports:The Internet of Things Retrieved from https://www.itu.int/net/wsis/tunis/newsroom/stats/The-Internet-of-Things-2005.pdf
Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory Into Practice, 38(2), 67-73. doi:10.1080/00405849909543834
Johnson, D. W., & Johnson, R. T. (2009). An Educational Psychology Success Story: Social Interdependence Theory and Cooperative Learning. Educational Researcher, 38(5), 365-379. doi:10.3102/0013189x09339057
Johnson, D. W., Johnson, R. T., & Smith, K. (2007). The State of Cooperative Learning in Postsecondary and Professional Settings. Educational Psychology Review, 19(1), 15-29. doi:10.1007/s10648-006-9038-8
Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014). A Crafts-Oriented Approach to Computing in High School: Introducing Computational Concepts, Practices, and Perspectives with Electronic Textiles. ACM Transactions on Computing Education, 14(1), 1-20. doi:10.1145/2576874
Kafai, Y. B., Searle, K., Kaplan, E., Fields, D., Lee, E., & Lui, D. (2013). Cupcake cushions, scooby doo shirts, and soft boomboxes: e-textiles in high school to promote computational concepts, practices, and perceptions. Paper presented at the Proceeding of the 44th ACM technical symposium on Computer science education, Denver, Colorado, USA.
Katterfeldt, E.-S., Dittert, N., & Schelhowe, H. (2015). Designing digital fabrication learning environments for Bildung: Implications from ten years of physical computing workshops. International Journal of Child-Computer Interaction, 5, 3-10. doi:http://dx.doi.org/10.1016/j.ijcci.2015.08.001
Khalili, N., Sheridan, K., Williams, A., Clark, K., & Stegman, M. (2011). Students Designing Video Games about Immunology: Insights for Science Learning. Computers in the Schools, 28(3), 228-240. doi:10.1080/07380569.2011.594988
Kitchenham, B. (2004). Procedures for Performing Systematic Reviews (Keele University Technical Report TR/SE-0401 ISSN: 1353-7776 and NICTA Technical Report 0400011T.1). Retrieved from https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
Kraft, C. (2014). White House Maker Faire Fact Sheet Has Been Released. Retrieved from http://makezine.com/2014/06/18/white-house-maker-faire-fact-sheet-has-been-released/
Ku, H.-Y., Tseng, H. W., & Akarasriworn, C. (2013). Collaboration factors, teamwork satisfaction, and student attitudes toward online collaborative learning. Computers in Human Behavior, 29(3), 922-929. doi:https://doi.org/10.1016/j.chb.2012.12.019
Kuo, Y.-F., & Chen, P.-C. (2008). Constructing performance appraisal indicators for mobility of the service industries using Fuzzy Delphi Method. Expert Systems with Applications, 35(4), 1930-1939. doi:http://doi.org/10.1016/j.eswa.2007.08.068
Kyndt, E., Raes, E., Lismont, B., Timmers, F., Cascallar, E., & Dochy, F. (2013). A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educational Research Review, 10, 133-149. doi:http://dx.doi.org/10.1016/j.edurev.2013.02.002
Lane, H. C., Cahill, C., Foutz, S., Auerbach, D., Noren, D., Lussenhop, C., & Swartout, W. (2013). The Effects of a Pedagogical Agent for Informal Science Education on Learner Behaviors and Self-efficacy. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Artificial Intelligence in Education: 16th International Conference, AIED 2013, Memphis, TN, USA, July 9-13, 2013. Proceedings (pp. 309-318). Berlin, Heidelberg: Springer Berlin Heidelberg.
Langley, D. J., Zirngiebl, M., Sbeih, J., & Devoldere, B. (2017). Trajectories to reconcile sharing and commercialization in the maker movement. Business Horizons, 60(6), 783-794. doi:https://doi.org/10.1016/j.bushor.2017.07.005
Leduc-Mills, B., & Eisenberg, M. (2011). The UCube: a child-friendly device for introductory three-dimensional design. Paper presented at the Proceedings of the 10th International Conference on Interaction Design and Children, Ann Arbor, Michigan.
Lee, H., Parsons, D., Kwon, G., Kim, J., Petrova, K., Jeong, E., & Ryu, H. (2016). Cooperation begins: Encouraging critical thinking skills through cooperative reciprocity using a mobile learning game. Computers & Education, 97, 97-115. doi:http://dx.doi.org/10.1016/j.compedu.2016.03.006
Lin, H.-F. (2007). Effects of extrinsic and intrinsic motivation on employee knowledge sharing intentions. Journal of Information Science, 33(2), 135-149. doi:10.1177/0165551506068174
Lu, H. P., & Hsiao, K. L. (2007). Understanding intention to continuously share information on weblogs. Internet Research, 17(4), 345-361. doi:10.1108/10662240710828030
Ma, J. (2016). Does Greater Online Assortment Pay? An Empirical Study Using Matched Online and Catalog Shoppers. Journal of Retailing, 92(3), 373-382. doi:http://dx.doi.org/10.1016/j.jretai.2016.05.004
Ma, Z., Shao, C., Ma, S., & Ye, Z. (2011). Constructing road safety performance indicators using Fuzzy Delphi Method and Grey Delphi Method. Expert Systems with Applications, 38(3), 1509-1514. doi:http://doi.org/10.1016/j.eswa.2010.07.062
Martigne, P. (2015). 2 - Overview of ETSI machine-to-machine and oneM2M architectures A2 - Antón-Haro, Carles. In M. Dohler (Ed.), Machine-to-machine (M2M) Communications (pp. 27-46). Oxford: Woodhead Publishing.
Martin, L. (2015). The Promise of the Maker Movement for Education. Journal of Pre-College Engineering Education Research, 5(1), 30-39.
Martinez, S. L., & Stager, G. S. (2013). Invent To Learn: Making, Tinkering, and Engineering in the Classroom. Constructing Modern Knowledge Press
McMillan, J. H., & Schumacher, S. (1997). Research in Education: A Conceptual Introduction. Menlo Park. CA: Longman.
Mellis, D. A., Jacoby, S., Buechley, L., Perner-Wilson, H., & Qi, J. (2013). Microcontrollers as material: crafting circuits with paper, conductive ink, electronic components, and an "untoolkit". Paper presented at the Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction, Barcelona, Spain.
Michaelsen, L. K., & Sweet, M. (2008). The essential elements of team‐based learning. New Directions for Teaching and Learning, 2008(116), 7-27. doi:doi:10.1002/tl.330
Moghavvemi, S., Sharabati, M., Paramanathan, T., & Rahin, N. M. (2017). The impact of perceived enjoyment, perceived reciprocal benefits and knowledge power on students' knowledge sharing through Facebook. The International Journal of Management Education, 15(1), 1-12. doi:http://dx.doi.org/10.1016/j.ijme.2016.11.002
Müller, B. C., Reise, C., & Seliger, G. (2015). Gamification in Factory Management Education – A Case Study with Lego Mindstorms. Procedia CIRP, 26, 121-126. doi:http://dx.doi.org/10.1016/j.procir.2014.07.056
Muntean, M. (2009). Collaborative Environments: Considerations Concerning Some Collaborative Systems. Informatica Economica, 13(2), 5-11.
Murray, T. J., Pipino, L. L., & van Gigch, J. P. (1985). A pilot study of fuzzy set modification of Delphi. Human Systems Management, 5(1), 76-80. doi:DOI: 10.3233/HSM-1985-5111
Nam, C. W., & Zellner, R. D. (2011). The relative effects of positive interdependence and group processing on student achievement and attitude in online cooperative learning. Computers & Education, 56(3), 680-688. doi:http://dx.doi.org/10.1016/j.compedu.2010.10.010
Nejad, S. G., & Keshavarzi, A. (2015). The Effect of Cooperative Learning on Reading Comprehension and Reading Anxiety of Pre-University Students. Journal of Applied Linguistics and Language Research, 2(8), 169-180.
Office for Standards in Education. (2011). ICT in schools: 2008 to 2011. Retrieved from https://www.gov.uk/government/publications/ict-in-schools-2008-to-2011
Ordanini, A., & Nunes, J. C. (2016). From fewer blockbusters by more superstars to more blockbusters by fewer superstars: How technological innovation has impacted convergence on the music chart. International Journal of Research in Marketing, 33(2), 297-313. doi:http://dx.doi.org/10.1016/j.ijresmar.2015.07.006
Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2017). Empirical studies on the Maker Movement, a promising approach to learning: A literature review. Entertainment Computing, 18, 57-78. doi:http://dx.doi.org/10.1016/j.entcom.2016.09.002
Papert, S., & Harel, I. (1991). Constructionism. Norwood, NJ Ablex.
Park, J., & Gabbard, J. L. (2018). Factors that affect scientists' knowledge sharing behavior in health and life sciences research communities: Differences between explicit and implicit knowledge. Computers in Human Behavior, 78, 326-335. doi:https://doi.org/10.1016/j.chb.2017.09.017
Partnership for 21st learning. (2015). P21 Framework Definitions. Retrieved from http://www.p21.org/storage/documents/docs/P21_Framework_Definitions_New_Logo_2015.pdf
Qi, J., Yang, P., Min, G., Amft, O., Dong, F., & Xu, L. (2017). Advanced internet of things for personalised healthcare systems: A survey. Pervasive and Mobile Computing, 41(Supplement C), 132-149. doi:https://doi.org/10.1016/j.pmcj.2017.06.018
Qin, Y., Sheng, Q. Z., Falkner, N. J. G., Dustdar, S., Wang, H., & Vasilakos, A. V. (2016). When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64(Supplement C), 137-153. doi:https://doi.org/10.1016/j.jnca.2015.12.016
Rourke, L., & Kanuka, H. (2007). Barriers to online critical discourse. International Journal of Computer-Supported Collaborative Learning, 2(1), 105-126. doi:10.1007/s11412-007-9007-3
Rychen, D. S., & Salganik, L. H. (2001). Defining and selecting key competencies. Ashland, OH, US: Hogrefe & Huber Publishers.
Rychen, D. S., & Salganik, L. H. (2003). Key competencies for a successful life and a well functioning society. Gottingen: Hogrefe & Huber.
Searle, K. A., & Kafai, Y. B. (2015). Boys' Needlework: Understanding Gendered and Indigenous Perspectives on Computing and Crafting with Electronic Textiles. Paper presented at the Proceedings of the eleventh annual International Conference on International Computing Education Research, Omaha, Nebraska, USA.
Shen, Y.-C., Lin, G. T. R., & Tzeng, G.-H. (2011). Combined DEMATEL techniques with novel MCDM for the organic light emitting diode technology selection. Expert Systems with Applications, 38(3), 1468-1481. doi:http://doi.org/10.1016/j.eswa.2010.07.056
Sheridan, K., Halverson, E. R., Litts, B., Brahms, L., Jacobs-Priebe, L., & Owens, T. (2014). Learning in the Making: A Comparative Case Study of Three Makerspaces. Harvard Educational Review, 84(4), 505-531. doi:10.17763/haer.84.4.brr34733723j648u
Shulman, L. (1987). Knowledge and Teaching: Foundations of the New Reform. Harvard Educational Review, 57(1), 1-23. doi:10.17763/haer.57.1.j463w79r56455411
So, H.-J., & Brush, T. A. (2008). Student perceptions of collaborative learning, social presence and satisfaction in a blended learning environment: Relationships and critical factors. Computers & Education, 51(1), 318-336. doi:https://doi.org/10.1016/j.compedu.2007.05.009
Tobias, R. J. (2015). Wireless communication of real-time ultrasound data and control. Paper presented at the SPIE Medical Imaging.
Tocháček, D., Lapeš, J., & Fuglík, V. (2016). Developing Technological Knowledge and Programming Skills of Secondary Schools Students through the Educational Robotics Projects. Procedia - Social and Behavioral Sciences, 217, 377-381. doi:http://dx.doi.org/10.1016/j.sbspro.2016.02.107
Toulmin, C. N., & Groome, M. (2007). Building a Science, Technology, Engineering, and Math Agenda. Available from ED496324 ERIC https://files.eric.ed.gov/fulltext/ED496324.pdf
Trilling, B., & Fadel, C. (2009). 21st Century Skills. Hoboken: Jossey-Bass.
UNESCO Institute for Education. (2003). Nurturing the treasure: vision and strategy 2002-2007. Retrieved from http://www.uil.unesco.org/adult-learning-and-education/improving-policy-and-practice/nurturing-treasure-vision-and-strategy
Wang, S., & Noe, R. A. (2010). Knowledge sharing: A review and directions for future research. Human Resource Management Review, 20(2), 115-131. doi:http://dx.doi.org/10.1016/j.hrmr.2009.10.001
Wasko, M. M., & Faraj, S. (2005). Why Should I Share? Examining Social Capital and Knowledge Contribution in Electronic Networks of Practice. MIS Quarterly, 29(1), 35-57. doi:10.2307/25148667
Wiggins, G., & McTighe, J. (2005). Understanding by Design (Expanded 2nd ed.). Alexandria Virginia: Association for Supervision and Curriculum Development.
Zollman, A. (2012). Learning for STEM Literacy: STEM Literacy for Learning. School Science and Mathematics, 112(1), 12-19. doi:10.1111/j.1949-8594.2012.00101.x
中國國務院辦公廳(2015)。國務院辦公廳關于發展眾創空間推進大眾創新創業的指導意見:取自http://big5.gov.cn/gate/big5/www.gov.cn/zhengce/content/2015-03/11/content_9519.htm。
方德隆(2000)。九年一貫課程學習領域之統整。課程與教學,3(1),1-18。
牛道慧、何台華、霍建國(2017)。團隊導向學習法導入跨領域通識課群的教學實踐-由歷史、文學與環境探討桃園埤塘的前世與今生。臺灣教育評論月刊,6(9),346-373。
王文科(2006)。課程與教學論(六版)。台北:五南。
王金國、孫台鼎(2014)。從學生的負向經驗省思合作學習的實施。臺灣教育評論月刊,3(7),88-91。
王春奎、鍾靜(2004)。兒童速率概念之初探研究。師大學報,49(1),41-64。
王英偉、謝至鎠(2010)。團隊導向學習簡介。醫學教育,14(1),79-89。
王剛(2015)。基於ArduinoUno平台的跌倒檢測報警系統設計。單片機與嵌入式系統應用(7),49-52。
史美瑤(2012)。以學生學習為中心的教學:團隊導向學習法。評鑑雙月刊(38),29-32。doi:10.6445/eb.201207.0008
行政院新聞傳播處(2018)。聽取「亞洲·矽谷推動方案」賴揆:以物聯網為發展主軸建構創新創業生態系。取自https://www.ey.gov.tw/Page/9277F759E41CCD91/180edd03-a1ba-43c3-be53-1e3bcef6a44d
何縕琪(2017)。素養導向教學的設計與評量:以東部一所小學為例。臺灣教育評論月刊,6(3),15-19。
吳明隆、涂金堂(2012)。SPSS與統計應用分析。台北市:五南。
李戈琦、張燕、向倫倫(2015)。基於Arduino的土壤溫濕度遠程監測系統設計。湖北農業科學(16),4060-4063。
李坤崇(2009)。認知情意技能教育目標分類及其在評量的應用。台北市:高等教育。
李浩綸(2014)。Maker運動不可或缺的「自造者」神器:Arduino。取自http://buzzorange.com/techorange/2014/02/14/what-is-arduino/
周淑卿(2002)。教師與學生在課程發展歷程中的處境-系統論與概念重建論的觀點。教育研究集刊(48:1),133-151。
周淑卿(2013)。課程綱要與教科書的差距─問題與成因。課程與教學,16(3),31-58。
林甫俊、吳振宇、郭獻中(2015)。物聯網共通標準及其平台之發展與應用。電工通訊季刊(2015第1季),10-23。doi:10.6328/ciee.2015.1.02
林坤誼(2018)。臺灣推動自造教育的省思與建議。臺灣教育評論月刊,7(2),6-9。
柯華葳、劉子鍵、劉旨峯(2005)。18歲學生應具備基本能力研究。教育部中教司委託研究。臺北市:國立中央大學學習與教學研究所。
洪裕宏(2008)。界定與選擇國民核心素養:概念參考架構與理論基礎研究。國科會專題研究計畫成果報告(編號:NSC95-2511-S-010-001)。臺北市:國立陽明大學。
范信賢(2016)。核心素養與十二年國民基本教育課程綱要:導讀《國民核心素養:十二年國教課程改革的DNA》。教育脈動(5),1-7。
范斯淳(2016)。高中工程設計取向之課程設計與實驗:跨學科STEM知識的整合與應用(未出版博士論文)。國立臺灣師範大學,台北市。
范斯淳、游光昭(2016)。科技教育融入STEM課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。doi:10.6209/jories.2016.61(2).06
高雄醫學大學教師發展暨教學資源中心(2015)。團隊導向學習教學法教師手冊。取自https://cfd.kmu.edu.tw/index.php/zh-TW/teacher-manual-for-team-based-learning-tbl-instructional-approach
國家教育研究院(2014)。十二年國民基本教育課程發展指引。取自http://12cur.naer.edu.tw/upload/files/020c0d22a5c0fad366f0f5ab1cf3b2a7.pdf
國家教育研究院(2016)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校科技領域(草案)。取自http://www.naer.edu.tw/ezfiles/0/1000/attach/92/pta_10229_131308_94274.pdf
國家教育研究院(2017)。106年度邁向十二年國教新課綱:學校課程實踐與教師專業發展學術研討會會議手冊全文。取自https://www.naer.edu.tw/ezfiles/0/1000/img/67/117857523.pdf
張志鵬(2016)。全球物聯網頻譜接取技術發展現況及趨勢。取自https://www.communications.org.tw/news/conference/item/download/165_0a7eb5bb1974b4ff2e59c9fe1e899223.html
張芬芬、陳麗華、楊國揚(2010)。臺灣九年一貫課程轉化之議題與因應。教科書研究,3(1),1-40。
張鈿富、吳慧子、吳舒靜(2010)。歐盟、美、澳「公民關鍵能力」發展及其啟示。教育資料集刊,48,273-299。
教育部(2014)。十二年國民基本教育課程綱要總綱。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_5320_2729842_56626.pdf
許芳銘、張志舜(2006)。與解決問題有關的知識分享互動模式-以認知觀點。交大管理學報,26(2),187-214。doi:10.6401/cmr.200612.0187
郭生玉(1998)。心理與教育研究法。臺北市:精華。
陳伯璋(2010)。臺灣國民核心素養與中小學課程發展之關係。課程研究,5(2),1-25。
陳伯璋、張新仁、蔡清田、潘慧玲(2007)。全方位的國民核心素養之教育研究。國科會研究計畫報告(編號:NSC95-2511-S-003-001)。台南:致遠管理學院。
陳彥廷(2014)。課程轉化實作促進國小師培生對數學課程理解之研究。當代教育研究季刊,22(4),1-54。doi:10.6151/cerq.2014.2204.01
游光昭、韓豐年、徐毅穎、林坤誼(2005)。國中學生科技態度量表之發展。高雄師大學報,19,69-83。
游家政(1999)。再造「國民教育九年一貫課程」的圖像--課程綱要的規劃構想與可能問題。資料與研究(26),4-8。
黃一峯、朱耀明(2013)。知識來源對學生動手做活動學習影響探究分析。工業科技教育學刊(6),45-56。doi:10.6306/jite.2013.6.5
黃光雄、楊龍立(2000)。課程設計:理念與實際。臺北:師大書苑。
黃政傑(1991)。課程設計。臺北:東華。
葉士昇(2017)。【108課綱系列4】國中必修,但國小資訊課將從小三延後到小五的隱憂。取自https://flipedu.parenting.com.tw/article/3850
葉俊巖、程毓明、羅希哲、石儒居(2018)。臺灣地區Maker教育實證研究之分析。臺灣教育評論月刊,7(5),180-188。
資訊及國際教育科(2018)。高雄市自研「資訊科技暨生活科技」市本課程,駁二MZONE大港自造特區正式發表。取自http://www.kh.edu.tw/publicInfo/bureauReport/20180128
歐用生、李建興、郭添財、黃嘉雄(2010)。九年一貫課程實施現況之評估。行政院研考會委託之研究報告。臺北:行政院研考會委託之研究報告。行政院研考會。
蔡清田(2007)。課程行動研究的實踐之道。課程與教學,10(3),75-89。
蔡清田(2011a)。課程改革中的「素養」(competence)與「知能」(literacy)之差異。教育研究月刊,203,84-96。
蔡清田(2011b)。課程改革中的核心素養之功能。教育科學期刊,10(1),203-217。
蔡清田、洪若烈、陳延興、盧美貴、陳聖謨、方德隆等人(2012)。K-12各教育階段核心素養與各領域課程統整研究。國家教育研究院委託研究報告(編號:NAER-100-16-A-1-02-00-2-03)。嘉義縣:國立中正大學課程研究所。
蔡清田、陳延興(2013)。國民核心素養之課程轉化。課程與教學,16(3),59-78。
蔡清田、陳延興、吳明烈、盧美貴、陳聖謨、方德隆等人(2011)。K-12中小學一貫課程綱要核心素養與各領域連貫體系研究。國家教育研究院委託研究報告。嘉義縣:國立中正大學課程研究所。
蔡清田、劉祐彰(2007)。國小教師課程設計的實踐與難題。課程研究,3(1),59-85。
賴光真(2016)。分組合作學習歷程學習謬誤之警覺。臺灣教育評論月刊,5(5),92-96

電子全文 電子全文(網際網路公開日期:20230712)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔