跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李炳浩
研究生(外文):LI, PING-HAO
論文名稱:常微分方程邊界值的數值探究
論文名稱(外文):Numerical Study on Boundary Value Problems of Ordinary Differential Equations
指導教授:陳振遠陳振遠引用關係
指導教授(外文):CHEN, JEN-YUAN
口試委員:陳振遠施俊良李俊憲
口試委員(外文):CHEN, JEN-YUANSHIH, CHUN-LIANGLI, CHUN-HSIEN
口試日期:2018-08-17
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:50
中文關鍵詞:數值方法初始值問題邊界值問題打靶投射法
外文關鍵詞:numerical methodinitial-value problemboundary-value problemshooting-projection method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們考慮關於兩點邊界值問題的數值方法。首先,我們介紹一些常微分方程的基本概念。其次,研究初始值問題的數值方法。逼近一階初始值問題的方法可以被分成兩類:一類逐點逼近原始問題;另一類稱為皮卡德迭代的方法,作積分去逼近原始問題中所包含的函數。二階初始值問題也被列入考慮,我們介紹尤拉法去給出逼近值。再者,我們將注意力放在兩點邊界值問題的數值方法。除了傳統方法,我們也研究在2017年被提出的打靶投射法[3]。第四部份,我們應用牛頓法,割線法以及打靶投射法,獲得邊界值問題的數值結果。最後,我們做出結論並提出一些待解問題。
In this thesis, we consider numerical methods of two-point boundary-value problems. First, we introduce some basic concepts of ordinary differential equations. Second, numerical methods of initial-value problems are studied. For approximating first-order initial-value problems, the methods can be divided into two types:one approximates the original problem point by point;the other one, called Picard iteration, performs integration to approximate the function contained in the original problem. Second-order initial-value problems are also taken into consideration, and we introduce Euler’s method to give approximations. Third, we focus our attention on numerical methods of two-point boundary-value problems. In addition to traditional methods, we also study the shooting-projection method [3], proposed in 2017. Fourth, we give numerical results, to which are obtained by applying Newton’s method, secant method, and shooting-projection method, of boundary-value problems. Finally, we arrive at a conclusion and indicate some problems unsolved.
Contents
Acknowledgements...........................................................I
摘要......................................................................II
Abstract.................................................................III
Contents..................................................................IV
List of Figures............................................................V

1. Introduction of Ordinary Differential Equations.........................1

2. Numerical Solutions of Initial-Value Problems...........................3
2-1 The Elementary Theory of Initial -Value Problems.......................3
2-2 Euler’s Method and Higher-Order Taylor Methods.........................4
2-3 Runge-Kutta Methods....................................................8
2-4 Picard Iteration......................................................17
2-5 Euler’s Method for Second-Order Initial-Value Problems................18

3. Numerical Solutions of Boundary-Value Problems.........................22
3-1 The Elementary Theory of Boundary -Value Problems.....................22
3-2 The Linear Shooting Method............................................22
3-3 Shooting Methods for Two-Point Boundary-Value Problems................25
3-4 Finite-Difference Methods.............................................31

4. Numerical Results of Some Boundary-Value Problems......................40

5. Conclusion.............................................................49

References................................................................50
List of Figures
Fig. 4.1..................................................................40
Fig. 4.2..................................................................41
Fig. 4.3..................................................................42
Fig. 4.4..................................................................43
Fig. 4.5..................................................................44
Fig. 4.6..................................................................45
Fig. 4.7..................................................................46
Fig. 4.8..................................................................47
Fig. 4.9..................................................................48



[1] Ivan Dimov, Stefka Fidanova, & Ivan Lirkov (Eds.) (2014). Numerical Methods and Applications. Borovets, Bulgaria:Springer.
[2] Richard L. Burden, & J. Douglas Faires (2010). Numerical Analysis, 9th edition. Boston, MA:Brooks/Cole.
[3] Stefan M. Filipov, Ivan D. Gospodinov, & Istvan Farago (2017). Shooting-projection method for two-point boundary value problems. Applied Mathematics Letters, 72, 10-15.
[4] Thomas, L.H. (1949). Elliptic Problems in Linear Differential Equations over a Network. Watson Sci. Comput. Lab Report, Columbia University, New York.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top