# 臺灣博碩士論文加值系統

(44.201.92.114) 您好！臺灣時間：2023/03/31 12:30

:::

### 詳目顯示

:
 Twitter

• 被引用:0
• 點閱:287
• 評分:
• 下載:17
• 書目收藏:0
 本研究中，我們考慮關於兩點邊界值問題的數值方法。首先，我們介紹一些常微分方程的基本概念。其次，研究初始值問題的數值方法。逼近一階初始值問題的方法可以被分成兩類：一類逐點逼近原始問題；另一類稱為皮卡德迭代的方法，作積分去逼近原始問題中所包含的函數。二階初始值問題也被列入考慮，我們介紹尤拉法去給出逼近值。再者，我們將注意力放在兩點邊界值問題的數值方法。除了傳統方法，我們也研究在2017年被提出的打靶投射法[3]。第四部份，我們應用牛頓法，割線法以及打靶投射法，獲得邊界值問題的數值結果。最後，我們做出結論並提出一些待解問題。
 In this thesis, we consider numerical methods of two-point boundary-value problems. First, we introduce some basic concepts of ordinary differential equations. Second, numerical methods of initial-value problems are studied. For approximating first-order initial-value problems, the methods can be divided into two types：one approximates the original problem point by point；the other one, called Picard iteration, performs integration to approximate the function contained in the original problem. Second-order initial-value problems are also taken into consideration, and we introduce Euler’s method to give approximations. Third, we focus our attention on numerical methods of two-point boundary-value problems. In addition to traditional methods, we also study the shooting-projection method [3], proposed in 2017. Fourth, we give numerical results, to which are obtained by applying Newton’s method, secant method, and shooting-projection method, of boundary-value problems. Finally, we arrive at a conclusion and indicate some problems unsolved.
 ContentsAcknowledgements...........................................................I摘要......................................................................IIAbstract.................................................................IIIContents..................................................................IVList of Figures............................................................V1. Introduction of Ordinary Differential Equations.........................12. Numerical Solutions of Initial-Value Problems...........................32-1 The Elementary Theory of Initial -Value Problems.......................32-2 Euler’s Method and Higher-Order Taylor Methods.........................42-3 Runge-Kutta Methods....................................................82-4 Picard Iteration......................................................172-5 Euler’s Method for Second-Order Initial-Value Problems................183. Numerical Solutions of Boundary-Value Problems.........................223-1 The Elementary Theory of Boundary -Value Problems.....................223-2 The Linear Shooting Method............................................223-3 Shooting Methods for Two-Point Boundary-Value Problems................253-4 Finite-Difference Methods.............................................314. Numerical Results of Some Boundary-Value Problems......................405. Conclusion.............................................................49References................................................................50 List of FiguresFig. 4.1..................................................................40Fig. 4.2..................................................................41Fig. 4.3..................................................................42Fig. 4.4..................................................................43Fig. 4.5..................................................................44Fig. 4.6..................................................................45Fig. 4.7..................................................................46Fig. 4.8..................................................................47Fig. 4.9..................................................................48
 [1] Ivan Dimov, Stefka Fidanova, & Ivan Lirkov (Eds.) (2014). Numerical Methods and Applications. Borovets, Bulgaria：Springer.[2] Richard L. Burden, & J. Douglas Faires (2010). Numerical Analysis, 9th edition. Boston, MA：Brooks/Cole.[3] Stefan M. Filipov, Ivan D. Gospodinov, & Istvan Farago (2017). Shooting-projection method for two-point boundary value problems. Applied Mathematics Letters, 72, 10-15.[4] Thomas, L.H. (1949). Elliptic Problems in Linear Differential Equations over a Network. Watson Sci. Comput. Lab Report, Columbia University, New York.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 微分變換及其在工程上之應用 2 等速移動平板上非正交停滯點流的二維分析 3 利用一維度模擬二階與四階生物 離子通道模型的電位與濃度 4 部分障礙選擇權之評價 5 多步法邊界值數值法則之探討 6 圓形彈性面上解的存在問題

 無相關期刊

 1 對數的探索 2 基本QR方法的數值探究 3 平方根的探究 4 高中學生解對數單元錯誤類型分析之研究─以台南市某高中高一生為例 5 動物醫院視覺識別之研究創作 6 「身」在何處—魏聖倢創作論述 7 從《酒徒》朝向無人之境：自書民族誌下書寫療癒的實踐 8 抗生素導致細胞代謝變化的音調拓樸性與耳蝸外聽毛細胞致病性的關聯：常微分方程數學模型的模擬探討 9 利用神經網路解微分方程 10 從中、英文歌詞探究聯覺 11 非線性常微分方程數值爆炸時間的收斂性 12 以指數試函數解奇異常微分方程及橢圓偏微分方程 13 非線性方程數值解的探討 14 多步法的數值解 15 對線性方程組之修改式的左共軛方向之方法

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室