跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范功準
研究生(外文):PHAM, CONG CHUAN
論文名稱:利用特異元件探討電路之抗雜訊特性
論文名稱(外文):Investigation of noise immunity of circuits using pathological elements
指導教授:王鴻猷
指導教授(外文):WANG, HONG-YOU
口試委員:陳育鑽張俊明蔣元隆王鴻猷
口試委員(外文):CHEN,YU-ZUANZHANG,JUN-MINGJIANG,YUAN-LONGWANG,HONG-YOU
口試日期:2019-01-21
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:43
中文關鍵詞:特異元件浮接鏡符號節點分析
外文關鍵詞:pathological elementfloating mirrorsymbolic nodal analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文中以2方法來改善目前的電路符號節點分析(使用接地特異元件)的效率。提出的2方法有助於建立較少的節點方程式,第一個方法直接利用電壓源特性作符號節點分析而不將其代換為等效電路,第二個方法利用簡潔的浮接特異鏡元件建模具差動輸入或多個電流輸出的主動元件,可使其所表示的等效電路更加簡化。所提出的分析程序應用於實際電路,證明其達到節點導納矩陣維度降低的可行性。
Noise was always a big issue for circuit design. When the complexity of integrated circuits is approaching than billion transistors because of modern technology trend, this issue was even more difficult to solve. However, some research achievements in using pathological elements to analyze circuits and its potential application in computer science have opened up a new way for solving that problem. By applying circuit analysis using pathological elements to calculate parameter related to the noise immunity of circuit, this work show the possibility for dealing with noise in circuit design and analysis using pathological elements.
The thesis also introduces two methods to improve the efficiency of symbolic nodal analysis with grounded pathological elements (i.e., nullors and grounded mirror elements). Both methods are helpful to performing symbolic nodal analysis by building smaller number of nodal equations - which is very meaningful for saving computing resources. The first approach is to make use of the property of voltage signal sources to perform symbolic nodal analysis directly without replacing them by their nullor equivalences. The second approach is to takes advantage of the compact floating pathological mirror elements to model the active devices that involve differential or multiple single-ended signals. These models can used to represent their equivalent circuits with simplified forms.
ABSTRACT
Acknowledge
Contents
List of Tables
List of Figures
Chapter 1 Introduction
1.1 Motivation
1.2 Goals
1.3 Organization of this dissertation
Chapter 2 Basic Theories and Literature
2.1 Introduction
2.2 Pathological section-based active device models
2.3 Power Supply Rejection Ratio (PSRR)
2.4 Common-Mode Rejection Ratio (CMRR)
Chapter 3 Symbolic NA of RLC-NGMFM network
3.1 Introduction
3.2 Symbolic NA of RLC-NGMFM network
Chapter 4 Application examples of proposed method
4.1 Introduction
4.2 Example 1
4.3 Example 2
4.4 Example 3
4.5 Example 4: Calculate PSRR of circuit
Chapter 5 Conclusion
[1] Carlosena A, Moschytz GS. Nullators and norators in voltage to current mode transformations.Int. J. Circuit Theory Appl. 1993; 21, 421–424.
[2] Kumar P, Senani R. Bibliography on nullors and their applications in circuit analysis, synthesis and design. Anal. Integr. Circuits Signal Process.2002, 33, 65–76.
[3] Schmid H. Approximating the universal active element. IEEE Trans. Circuits Syst. II2000, 47,1160–1169.
[4] Swamy MNS. Transpose of a multiterminal element and applications. IEEE Trans. Circuits Syst.II2010, 57, 696–700.
[5] Hashemian R. Fixator-Norator Pairs vs Direct Analytical Tools in Performing Analog CircuitDesigns. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2014; 61(8): 569–573.
[6] Soliman AM, Saad RA. The voltage mirror–current mirror pair as a universal element. Int J Circuit Theory Appl2010;38, 787–795.
[7] Soliman AM. Pathological realizations of the DCVC (CDBA) and applications to oscillators. AEU Int J Electron Commun2011; 65, 985–992.
[8] Soliman AM. The inverting second generation current conveyors as universal building blocks AEU Int J Electron Commun2008; 62(2), 114–121
[9] Tran HD, Wang HY, Nguyen QM, Chiang NH, Lin WC, Lee TF. High-Q biquadratic notch filter synthesis using nodal admittance matrix expansion. AEU Int J Electron Commun2015;69(7), 981–987.
[10] Floberg H. Symbolic analysis in analog integrated circuit design. Boston: Kluwer Academic; 1997.
[11] Tlelo-Cuautle E, Sanchez-Lopez C, Martinez-Romero E, Tan SXD. Symbolic analysis of 17 analog circuits containing voltage mirrors and current mirrors. Anal. Integr. Circuits Signal Process. 2010, 65, 89–95.
[12] Awad IA, Soliman AM. Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. Int. J. Electron. 1999, 86, 413–432.
[13] Awad IA, Soliman AM. On the voltage mirrors and the current mirrors. Anal. Integr. Circuits Signal Process. 2002, 32, 79–81.
[14] Saad RA, Soliman AM. A new approach for using the pathological mirror elements in the ideal representation of active devices. Int. J. Circuit Theory Appl. 2010, 38, 148–178.
[15] Soliman AM. On the DVCC and the BOCCII as adjoint elements. J. Circuits, Systems, and Computers2009, 18, 6, 1017–1032.
[16] Soliman AM. Pathological representation of the two-output CCII and ICCII family and application. Int. J. Circuit Theory Appl. 2011, 39, 589–606.
[17] Soliman AM. Generalized, floating and self adjoint differential voltage current conveyor. Trends in Applied Sciences Research2011, 6, 700–709.
[18] Huang WC, Wang HY, Cheng PS, Lin YC. Nullor equivalents of active devices for symbolic circuit analysis. Circuits Syst. Signal Process. 2012, 31, 865–875.
[19] Tan L, Liu K, Bai Y, Teng J. Construction of CDBA and CDTA behavioral models and the applications in symbolic circuit analysis. Anal. Integr. Circuits Signal Process.2013, 75, 517–523
[20] Wang HY, Huang WC, Chiang NH. Symbolic nodal analysis of circuits using pathological elements. IEEE Trans. Circuits Syst. II 2010, 57, 874–877.
[21] Sanchez-Lopez C, Fernandez FV, Tlelo-Cuautle E, Tan SXD. Pathological element-based active device models and their application to symbolic analysis. IEEE Trans. Circuits Syst. I 2011, 58, 1382–1395. 18
[22] Sanchez-Lopez C. Pathological equivalents of fully-differential active devices for symbolic nodal analysis. IEEE Trans. Circuits Syst. I2013, 60, 603–615.
[23] Nguyen QM, Chiang NH, Tran HD, Wang HY, Yin LT. Symbolic nodal analysis of conveyor-based circuits considering non-ideal active devices. AEU International Journal of Electronics and Communications, 2015, 69(11), 1635–1640.
[24] Wang HY, Chang SH, Chiang NH, Nguyen QM. Symbolic analysis using floating pathological elements. Proc. Int. Conf. on Genetic and Evolutionary Computing, 2013, 379–387
[25] Chang CM, Al-Hashimi BM, Wang CL, Hung CW. Single fully differential current conveyor biquad filters. IEE Proc. Circuits, Devices Syst. 2003, 150, 394–398
[26] Ibrahim MA, Kuntman H, Cicekoglu O. New second-order low-pass, high-pass and band-pass filters employing minimum number of active and passive elements, Proc. Int. Symp. Signal Circuits Syst.2003, 557–560.
[27] Wang HY, Chiang NH. Comment on construction of CDBA and CDTA behavioral models and the applications in symbolic circuits analysis. Anal. Integr. Circuits Signal Process.2013, 76, 273–274.
[28] El-Adawy AA, Soliman AM, Elwan HO. A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans. Circuits Syst. II 2000, 47, 306–313
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top