(3.235.108.188) 您好!臺灣時間:2021/02/26 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳德輔
研究生(外文):Te-Fu Chen
論文名稱:在石墨烯複合基板上調控金奈米粒子結構及其拉曼光譜之應用
論文名稱(外文):Controlled Gold Nanostructures on Graphene Hybrid Panel for Surface Enhanced Raman Scattering Application
指導教授:陳修維陳軍互
指導教授(外文):Hsiu-Wei ChenChun-Hu Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:101
中文關鍵詞:表面增強拉曼光譜晶種還原法光催化金奈米粒子石墨烯
外文關鍵詞:surface-enhanced Raman scatteringgrapheneseed-mediated methodgold nanoparticlesphotocatalysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:56
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金奈米粒子已被廣泛應用在光電元件、感測及生醫等領域,因其具有化學穩定性,高的生物相容性。當金的尺寸由相對巨大的尺度(微米以上)降低至奈米級(一至數百奈米)時,其能階的不連續性、定域表面電漿共振(localized surface plasma resonance)等性質開始顯現;又金奈米粒子表面裸露之晶格面與巨觀尺度不同,催化活性改變,以及表面積的大幅提升等,皆顯示金奈米粒子於牽涉電子、能階分佈、表面結構的反應中之重要性。
本研究利用氣相沉積法(CVD)製備單層石墨烯,並將其與半導體二氧化鈦(TiO2)結合去製作出具有表面增強拉曼光譜效果的基板(GHP)。此文使用晶種還原法,晶種透過光催化可將金奈米粒子做為晶種沉積到GHP上,尺寸大小及密度可藉由不同濃度的金氯酸或添加劑來調控,並在生長溶液溫度為35°C以及金氯酸與硝酸銀的比例為5:1製備尖刺海膽狀3D結構的金奈米粒子(~100-300 nm),有別於以往需另外透過修飾基板表面等方法來將金的溶液分散做為表面增強拉曼(SERS)的基板。最後,得到的樣品(Au-GOHP)在SERS量測結果EF可達到1010之上,並且可以將AuGOHP轉移到可彎折式之透明基板,大大提升其應用的潛力。
Gold nanoparticles with different surface structures, shapes and sizes are related with their physical and chemical properties. These properties make gold particles suitable for applications of spectroscopy, catalysis, energy, and biology. To prepare gold nanoparticles with different shapes, seed-mediated method is a generally used method.
Here, we combine graphene with TiO2 to facilitate photoelectron generation under light irradiation, which enables to the gold deposition on the surface of the graphene. When we oxidized graphene, we can find the higher density of gold deposited on the substrate. By changing concentrations of chloroauric acid from 10-4 to 10-6 M, the sizes and the densities of gold seeds are increased. Then, we immerse the gold seeded substrate in the growth solution to yield urchin-like gold nanoparticles (e.g. the ratio of Au3+ to Ag+ in growth is 5 to 1 at 35°C). Different concentrations of gold and silver ions in growth solution or different reaction temperatures will lead to different shapes.
Finally, the obtained samples (AuGOHP) have an EF (enhancement factor) more than 1010. Besides, we can transfer the graphene deposited gold nanoparticles to another flexible and transparent substrate, like mica for practical SERS measurements.
目錄
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 1
圖目錄 4
表目錄 8
在石墨烯-半導體複合基板上調控金奈米粒子結構及其拉曼光譜之應用 9
一、緒論 9
1.1 研究動機 9
1.2 背景介紹 11
1.2.1 石墨烯 11
1.2.2 氧化石墨烯 11
1.2.3 石墨烯合成方法 11
1.2.4 石墨烯拉曼光譜鑑定 13
1.2.5 晶種還原法合成金奈米粒子 15
1.2.6 表面增強拉曼光譜 17
1.2.7 石墨烯-半導體複合基板 18
1.3 文獻回顧 20
二、實驗方法 21
2.1 實驗藥品 21
2.2 製作單層石墨烯 22
2.3 石墨烯-半導體複合基板之製作 22
2.4 製備金奈米晶種 23
2.5 金奈米晶種生長 25
2.6 鑑定方法: 27
2.6.1 石墨烯拉曼光譜鑑定 27
2.6.2 表面增強拉曼光譜 27
2.6.3 X光繞射儀 27
2.6.4 掃描式電子顯微鏡 27
2.6.5 化學分析影像能譜儀 27
三、實驗結果與討論 28
3.1 石墨烯-半導體複合基板(GHP)之鑑定 28
3.2 製備晶種(Au seeds)沉積於GHP(GHPseed) 29
3.3 晶種沉積於GHP及GOHP: 29
3.4 金氯酸濃度,CTAB及KI添加量不變 31
3.5 金之晶種樣品命名 34
3.6 在GHP和GOHP上調控金奈米粒子的外型 34
3.6.1 反應溫度的改變 35
3.6.2 GHP基板與GOHP基板生長之比較(AuGHP與AuGOHP) 38
3.6.3 不同晶種之GOHPseed製備AuGOHP 40
3.6.4 AuGOHP之XPS及EDS鑑定 45
3.6.4.1 EDX之鑑定 45
3.6.4.2 XPS光譜鑑定 46
3.6.5 氧化石墨烯拉曼訊號對GOHP生長結果之影響 49
3.6.6 銀離子影響 51
3.6.7 改變生長溶液中金氯酸及硝酸銀濃度 53
3.6.8 改變在生長溶液中反應時間 58
3.6.9 在沒有晶種之GOHP以及TiO2基板上進行生長 60
3.6.10 表面增強拉曼光譜 62
3.6.10.1 AuGOHP之SERS量測 62
3.6.10.2 表面增強拉曼 mapping 65
3.6.10.3 石墨烯之影響 68
3.6.11 轉移至可彎折式基板 71
四、綜合討論 73
4.1 貼覆石墨烯基板與氧化石墨烯基板之比較 73
4.2 不同金氯酸濃度所造成金奈米晶種的影響 73
4.3 不同溫度生長溶液的影響 74
4.4 生長溶液中不同金氯酸濃度與硝酸銀濃度之比較 74
4.5 SERS結果比較 74
五、結論 76
六、未來展望 77
參考文獻 78
附錄 89
官能基化氧化石墨烯 90
1.1 氧化石墨烯製備 91
1.2 GO-OA之至製備(將氧化石墨烯以油胺官能基化) 91
實驗結果與討論 92
2.1 方法一與方法二之IR鑑定結果 92
2.2 方法一與方法二之拉曼光譜鑑定結果 94
結論: 96

圖目錄
圖 1 1、氧化石墨烯可能結構示意圖。 11
圖1 2、石墨烯製備之方法示意圖。 13
圖1 3、氧化石墨烯之拉曼光譜。 14
圖1 4、石墨烯與石墨拉曼光譜。 14
圖1 5、金之兩種生長路徑示意圖。(A) 動力學控制;(B) 選擇性表面鈍化;在動力學控制下,金的還原速率直接影響形狀,而在表面鈍化之路徑,銀沉積於晶種表面阻擋進一步生長而影響形狀。 16
圖1 6、碘離子對金離子還原在金屬金表面的影響。(a) 碘離子佔據金屬金表面不同晶面之示意圖;(b) 金屬金沿特定晶面生長的示意圖。 16
圖1 7、SERS應用示意圖。 18
圖1 8、(a) ZnO-rGO-Au複合材料合成方法示意圖;(b) 不同層數GHP電子電洞再結合推測機制示意圖。 19
圖2 1、GHP示意圖。 23
圖2 2、GHP固定於支架至於石英管中之相片。 24
圖2 3、以光催化還原晶種製備示意圖。 24
圖2 4、將沉積完之金晶種基板浸入生長溶液示意圖。 26
圖3 1、GHP之鑑定。(a) GHP之XRD光譜圖;(b) 石墨烯有無貼覆區域及氧化石墨烯之GHP拉曼光譜。 28
圖3 2、GHP上石墨烯及氧化石墨烯之拉曼光譜。(a) 石墨烯;(b) 氧化石墨烯之拉曼光譜圖。 30
圖3 3、以10-4 M金氯酸光催化沉積之GHPseed及GOHPseed。(a)、(b) 為10-4 M 金氯酸光催化沉積於GHP不同放大倍率之影像;(c)、(d) 為10-4 M光催化沉積於GOHP不同放大倍率之影像。 30
圖3 4、不同金氯酸濃度對晶種的影響。(a)、(b) 為10-4 M金氯酸濃度;(c)、(d) 為10-5 M金氯酸濃度;(e)、(f) 為10-6 M金氯酸濃度所得GOHPseed不同倍率之SEM;(g)、(h) 分別為為10-7 M及10-8 M金氯酸濃度所得GOHPseed SEM影像。 33
圖3 5、不同溫度下對AuGOHP之影響。(a)、(b) 為在35°C生長溶液中浸泡12小時之AuGOHP不同倍率之SEM影像;(c)、(d) 為在80°C生長溶液中浸泡12小時之AuGOHP不同倍率之SEM影像。 36
圖3 6、不同溫度對AuGOHP之影響(石墨烯邊界及TiO2區域)。(a)、(b) 為在35°C生長溶液中浸泡12小時之AuGOHP不同倍率之SEM影像;(c)、(d) 為在80°C生長溶液中浸泡12小時之AuGOHP不同倍率之SEM影像。 37
圖3 7、GHP與GOHP基板已相同生長溶液及反應條件之結果。(a)、(c) 為AuGHP不同倍率之SEM影像;(b)、(d) 為AuGOHP不同倍率之SEM影像。 39
圖3 8、不同金氯酸濃度製備之晶種浸泡於原濃度生長溶液12小時之AuGOHP SEM影像。(a)、(b)為10-4/GOHPseed ;(c)、(d)為10-5/GOHPseed ;(e)、(f)為10-6/GOHPseed 浸泡於原濃度生長溶液12小時之AuGOHP 不同倍率之SEM影像。 42
圖3 9、不同金氯酸濃度製備之晶種浸泡於原濃度生長溶液12小時之AuGOHP。(a)、(b)為10-7/GOHPseed;(c)、(d)為10-8/GOHPseed浸泡於原濃度生長溶液12小時之AuGOHP 不同倍率之SEM影像。 43
圖 3 10、不同金氯酸濃度製備之晶種浸泡於原濃度生長溶液12小時之AuGOHP。(a)、(b)為沒有晶種,(c)、(d)為10-9/GOHPseed浸泡於原濃度生長溶液12小時之AuGOHP不同倍率SEM影像圖。 44
圖3 11、AuGOHP之EDX光譜圖。(a)、(c)分別為生長溶液金與銀比例5:1 AuGOHP; (c)、(d)分別為生長溶液金與銀比例1:2之TEM影像及EDX光譜。 45
圖3 12、(a) GOHP;(b) AuGOHP之XPS C 1s光譜圖。 47
圖3 13、AuGOHP之XPS光譜。(a)為AuGOHP全譜、(b) Au 4f、(c) Ag 3d之光譜。 48
圖3 14、不同氧氣電漿照射時間之影響 。(a) 氧氣電漿對GHP處理4秒;(b) 氧氣電漿對GHP處理2秒之拉曼光譜;(c) 為(a)相對應AuGOHP、(d) 為(b)相對應AuGOHP之SEM影像。 50
圖 3 15、有無銀離子對晶種生長之影響。(a)、(b) 10-6/GOHPseed 浸泡於有硝酸銀的生長濃液12小時所得之AuGOHP不同倍率之SEM影像;(c)、(d) 10-6/GOHPseed 浸泡於無硝酸銀的生長濃液12小時所得之AuGOHP不同倍率之SEM影像。 52
圖3 16、降低金氯酸濃度為原來0.1倍之影響。(a)、(b) 為10-6/GOHPseed 浸泡在0.1倍Au3+及1倍Ag+之生長溶液所得AuGOHP之不同倍率SEM影像圖。(c)、(d) 為10-7/GOHPseed 浸泡在0.1倍 Au3+及1倍Ag+之生長溶液所得AuGOHP之不同倍率SEM影像圖。 54
圖3 17、降低生長溶液中之金氯酸及硝酸銀為原濃度之0.1倍之影響。(a)、(b)為10-6/GOHPseed 浸泡在0.1倍 Au3+及0.1倍 Ag+之生長溶液所得AuGOHP之不同倍率SEM影像圖。(c)、(d) 為10-7/GOHPseed 浸泡在0.1倍Au3+及0.1倍Ag+之生長溶液所得AuGOHP之不同倍率SEM影像圖。 55
圖3 18、提升生長溶液中硝酸銀為10倍及降低金氯酸濃度為0.1倍之影響。(a)、(b)為10-6/GOHPseed 浸泡在0.1倍 Au3+及10倍 Ag+之生長溶液所得AuGOHP之不同倍率SEM影像圖;(c)、(d) 為10-7/GOHPseed 浸泡在0.1倍Au3+及10倍Ag+之生長溶液所得AuGOHP之不同倍率SEM影像圖。 56
圖 3 19、AuGOHP之鑑定。(Ag:Cubic, JCPDS 89-3722;Au:Cubic, JCPDS 01-1172) 58
圖3 20、生長時間對AuGOHP之影響。生長時間為(a) 1 h;(b) 3 h;(c) 6 h;(d) 12 h之AuGOHP SEM影像圖。 59
圖3 21、沒有晶種對合成金奈米粒子之影響。(a)、(b) 將TiO2基板;(c)、(d) 將GOHP直接浸泡於原濃度生長溶液12小時之樣品SEM不同倍率之影像。 61
圖3 22、AuGOHP1Ag1Au -35°C(seed:10-6/GOHPseed)進行SERS量測之結果。以(a) 10-8 M、(b) 10-10 M、(c) 10-12 M、(d) 10-14M及(e) 10-16 M之R6G量測SERS之拉曼光譜圖。 63
圖 3 23、AuGOHP1Ag1Au -0°C(seed:10-6/GOHPseed)之(a)SEM影像;(b)SERS之拉曼光譜。 64
圖3 24、不同金奈米粒子分佈密度之SERS均勻度結果。(a)、(b) 分別為AuGOHP1Ag1Au -35°C(seed:10-6/GOHPseed)之SEM影像及SERS mapping光譜;(c)、(d) 分別為AuGOHP1Ag0.1Au -35°C(seed:10-6/GOHPseed)之SEM影像及SERS mapping光譜。 66
圖3 25、不同生長時間之樣品SERS均勻度結果。(a) AuGOHP1Ag1Au -35°C(seed:10-6/GOHPseed)生長1小時之SEM影像及其(b) SERS mapping光譜;(c) AuGOHP1Ag1Au -35°C(seed:10-6/GOHPseed)生長3小時之SEM影像及其(d) SERS mapping光譜。 67
圖3 26、AuGOHP 移除石墨烯對於SERS效果之影響。(a)移除石墨烯前:(b)移除石墨烯後之SEM影像:(c)AuGOHP以10-16 M之 R6G;(d)AuGOHP移除石墨烯以10-16至10-6 M 之R6G進行SERS量測之拉曼光譜圖。 69
圖 3 27、AuGOHP 移除石墨烯前後之XRD光譜。 70
圖3 28、將AuGOHP轉移至mica上進行SERS量測之(a)平行測量;(b)彎曲測量拉曼光譜圖;(c)俯視;(d)平視之示意圖。 72
圖 4 1、不同密度之AuGOHP所測得之SERS結果。 75

表目錄
表 2 1、改變金氯酸與硝酸銀之添加量。 26
表 3 1、不同金氯酸濃度所沉積之金奈米粒子平均直徑以及在相同倍率SEM影像下顆粒數。 32
表 3 2、各樣品之代號。 34
表 3 3、由不同金氯酸濃度GOHPseed所生長得之AuGOHP平均直徑。 43
表 3 4、各AuGOHP之平均半徑。 57
表3 5、以不同濃度之R6G對AuGOHP1Ag1Au-35°C(seed:10-6/AuGOHP)進行SERS量測之訊號強度及EF值。 63
表 4 1、不同金氯酸濃度所沉積之金奈米粒子平均直徑。 73
表 4 2、生長溶液中所含金氯酸與硝酸銀不同比例之影響。 74
1.Qu, L.; Wang, N.; Xu, H.; Wang, W.; Liu, Y.; Kuo, L.; Yadav, T. P.; Wu, J.; Joyner, J.; Song, Y.; Li, H.; Lou, J.; Vajtai, R.; Ajayan, P. M. Gold Nanoparticles and g-C3N4-Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Adv. Funct. Mater. 2017, 27, 1701714.
2.Li, X.; Chen, G.; Yang, L.; Jin, Z.; Liu, J. Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection. Adv. Funct. Mater. 2010, 20, 2815-2824.
3.Li, Y.; Dykes, J.; Gilliam, T.; Chopra, N. A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles. Nanoscale 2017, 9, 5263-5272.
4.Gu, J.; Zhang, Y. W.; Tao, F. F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 2012, 41, 8050-8065.
5.Chen, Y.; Zhang, Y.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.; Cheng, S.; Lu, L.; Zhang, W.; Zhang, Z.; Zhi, X.; Zhang, Q.; Alfranca, G.; de la Fuente, J. M.; Chen, D.; Cui, D. Breath Analysis Based on Surface-Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons. ACS Nano 2016, 10, 8169-8179.
6.Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. Shape control in gold nanoparticle synthesis. Chem. Commun. 2008, 37, 1783-1791.
7.Sperling, R. A.; Rivera Gil, P.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896-1908.
8.Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901-1903.
9.Jana, N. R.; Gearheart, L.; Murphy, C. J. Seed‐Mediated Growth Approach for Shape‐Controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 2001, 13, 1389-1393.
10.Bakr, O. M.; Wunsch, B. H.; Stellacci, F. High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles. Chem. Commun. 2006, 18, 3297-3301.
11.Nikoobakht, B.; El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15, 1957-1962.
12.Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.-Q. Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. J. Am. Chem. Soc. 2008, 130, 6949-6951.
13.Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W. One-Step Synthesis of Au@Pd Core−Shell Nanooctahedron. J. Am. Chem. Soc. 2009, 131, 17036-17037.
14.Li, J.; Wu, J.; Zhang, X.; Liu, Y.; Zhou, D.; Sun, H.; Zhang, H.; Yang, B. Controllable Synthesis of Stable Urchin-like Gold Nanoparticles Using Hydroquinone to Tune the Reactivity of Gold Chloride. J. Phys. Chem. C 2011, 115, 3630-3637.
15.Fan, M.; Andrade, G. F.; Brolo, A. G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta. 2011, 693, 7-25.
16.Zhang, L.; Lang, X.; Hirata, A.; Chen, M. Wrinkled Nanoporous Gold Films with Ultrahigh Surface-Enhanced Raman Scattering Enhancement. ACS Nano 2011, 5, 4407-4413.
17.Kuo, C. C.; Chen, C. H. Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering. Nanoscale 2014, 6, 12805-12813.
18.Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308.
19.Novoselov, K. S.; Fal''ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
20.Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
21.Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B. Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC. Adv. 2015, 5, 10782-10789.
22.Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S. S.; Guillemette, J.; Skulason, H. S.; Szkopek, T.; Siaj, M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 2011, 49, 4204-4210.
23.Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 2011, 49, 4122-4130.
24.Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
25.Ling, X.; Huang, S.; Deng, S.; Mao, N.; Kong, J.; Dresselhaus, M. S.; Zhang, J. Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc. Chem. Res. 2015, 48, 1862-1870.
26.Dimiev, A. M.; Tour, J. M. Mechanism of Graphene Oxide Formation. ACS Nano 2014, 8, 3060-3068.
27.Huang, X.; Neretina, S.; El-Sayed, M. A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880-4910.
28.Li, N.; Zhao, P.; Astruc, D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem., Int. Ed. 2014, 53, 1756-1789.
29.Wang, W.; Yan, Y.; Zhou, N.; Zhang, H.; Li, D.; Yang, D. Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties. Nanoscale 2016, 8, 3704-3710.
30.Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60-103.
31.Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic Metal Nanoparticles:  Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005, 109, 13857-13870.
32.Sau, T. K.; Rogach, A. L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater. 2010, 22, 1781-804.
33.Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 2012, 134, 14542-13554.
34.O''Brien, M. N.; Jones, M. R.; Brown, K. A.; Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 2014, 136, 7603-7606.
35.Lin, H. X.; Lei, Z. C.; Jiang, Z. Y.; Hou, C. P.; Liu, D. Y.; Xu, M. M.; Tian, Z. Q.; Xie, Z. X. Supersaturation-dependent surface structure evolution: from ionic, molecular to metallic micro/nanocrystals. J. Am. Chem. Soc. 2013, 135, 9311-9314.
36.Quan, Z.; Wang, Y.; Fang, J. High-Index Faceted Noble Metal Nanocrystals. Acc. Chem. Res. 2013, 46, 191-202.
37.Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013, 13, 765-771.
38.Millstone, J. E.; Hurst, S. J.; Metraux, G. S.; Cutler, J. I.; Mirkin, C. A. Colloidal gold and silver triangular nanoprisms. Small 2009, 5, 646-664.
39.Wang, Y.; Sentosun, K.; Li, A.; Coronado-Puchau, M.; Sánchez-Iglesias, A.; Li, S.; Su, X.; Bals, S.; Liz-Marzán, L. M. Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control. Chem. Mater. 2015, 27, 8032-8040.
40.Personick, M. L.; Mirkin, C. A. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 18238-18247.
41.Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215-5217.
42.Jeanmaire, D. L.; Van Duyne, R. P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977, 84, 1-20.
43.Doering, W. E.; Piotti, M. E.; Natan, M. J.; Freeman, R. G. SERS as a Foundation for Nanoscale, Optically Detected Biological Labels. Adv. Mater. 2007, 19, 3100-3108.
44.Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391-1428.
45.Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 2010, 10, 553-561.
46.Goul, R.; Das, S.; Liu, Q.; Xin, M.; Lu, R.; Hui, R.; Wu, J. Z. Quantitative analysis of surface enhanced Raman spectroscopy of Rhodamine 6G using a composite graphene and plasmonic Au nanoparticle substrate. Carbon 2017, 111, 386-392.
47.Cao, X.; Shan, Y.; Tan, L.; Yu, X.; Bao, M.; Li, W.; Shi, H. Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy. J. Mater. Chem. B 2017, 5, 5983-5995.
48.Sinha, G.; Depero, L. E.; Alessandri, I. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl.Mater. Interfaces 2011, 3, 2557-2563.
49.Wen, C.; Liao, F.; Liu, S.; Zhao, Y.; Kang, Z.; Zhang, X.; Shao, M. Bi-functional ZnO-RGO-Au substrate: photocatalysts for degrading pollutants and SERS substrates for real-time monitoring. Chem. Commun. 2013, 49, 3049-3051.
50.Li, C.; Liu, A.; Zhang, C.; Wang, M.; Li, Z.; Xu, S.; Jiang, S.; Yu, J.; Yang, C.; Man, B. Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering. Opt. Express 2017, 25, 20631-20641.
51.Sakir, M.; Pekdemir, S.; Karatay, A.; Küçüköz, B.; Ipekci, H. H.; Elmali, A.; Demirel, G.; Onses, M. S. Fabrication of Plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications. ACS Appl. Mater. Interfaces 2017, 9, 39795-39803.
52.Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Ultrathin Epitaxial Graphite:  2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B 2004, 108, 19912-19916.
53.Tian, L.; Luan, J.; Liu, K. K.; Jiang, Q.; Tadepalli, S.; Gupta, M. K.; Naik, R. R.; Singamaneni, S. Plasmonic Biofoam: A Versatile Optically Active Material. Nano Lett. 2016, 16, 609-616.
54.Pérez-Juste, J.; Liz-Marzán, L. M.; Carnie, S.; Chan, D. Y. C.; Mulvaney, P. Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Adv. Funct. Mater. 2004, 14, 571-579.
55.Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)−CTAB Complexes. J. Phys. Chem. B 2005, 109, 14257-14261.
56.da Silva, A. G. M.; Rodrigues, T. S.; Haigh, S. J.; Camargo, P. H. C. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chem. Commun. 2017, 53, 7135-7148.
57.Schlucker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem., Int. Ed. 2014, 53, 4756-4795.
58.Liang, H.; Li, Z.; Wang, W.; Wu, Y.; Xu, H. Highly Surface-roughened Flower-like Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering. Adv. Mater. 2009, 21, 4614-4618.
59.Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates. Nano letters 2005, 5, 1569-1574.
60.Chen, C. H.; Hu, S.; Shih, J. F.; Yang, C. Y.; Luo, Y. W.; Jhang, R. H.; Chiang, C. M.; Hung, Y. J. Effective Synthesis of Highly Oxidized Graphene Oxide That Enables Wafer-scale Nanopatterning: Preformed Acidic Oxidizing Medium Approach. Sci. Rep. 2017, 7, 3908.
61.Zhang, Q.; Jing, H.; Li, G. G.; Lin, Y.; Blom, D. A.; Wang, H. Intertwining Roles of Silver Ions, Surfactants, and Reducing Agents in Gold Nanorod Overgrowth: Pathway Switch between Silver Underpotential Deposition and Gold–Silver Codeposition. Chem. Mater. 2016, 28, 2728-2741.
62.Sakir, M.; Pekdemir, S.; Karatay, A.; Kucukoz, B.; Ipekci, H. H.; Elmali, A.; Demirel, G.; Onses, M. S. Fabrication of Plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications. ACS Appl. Mater. Interfaces 2017, 9, 39795-39803.
63.Wei, H.; Xu, H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 2013, 5, 10794-10805.
64.Liu, Y.; Pedireddy, S.; Lee, Y. H.; Hegde, R. S.; Tjiu, W. W.; Cui, Y.; Ling, X. Y. Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges. Small 2014, 10, 4940-4950.
65.Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Evolution of gold nanostructures on graphene. Small 2011, 7, 2868-72.
66.Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Grácio, J. Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chem. Mater. 2009, 21, 4796-4802.
67.Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)−CTAB Complexes. J. Phy. Chem. B 2005, 109, 14257-14261.
68.Zhu, J.; Zhang, F.; Chen, B.-B.; Li, J.-J.; Zhao, J.-W. Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature. Mater. Sci. Eng. B 2015, 199, 113-120.
69.Gong, X.; Liu, G.; Li, Y.; Yu, D. Y. W.; Teoh, W. Y. Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chem. Mater. 2016, 28, 8082-8118.
70.Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution Properties of Graphite and Graphene. J. Am. Chem. Soc. 2006, 128, 7720-7721.
71.Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Adv. Mater. 2009, 21, 1275-1279.
72.Liu, Z.-B.; Xu, Y.-F.; Zhang, X.-Y.; Zhang, X.-L.; Chen, Y.-S.; Tian, J.-G. Porphyrin and Fullerene Covalently Functionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties. J. Phy. Chem. B 2009, 113, 9681-9686.
73.Wang, S.; Chia, P. J.; Chua, L. L.; Zhao, L. H.; Png, R. Q.; Sivaramakrishnan, S.; Zhou, M.; Goh Roland, G. S.; Friend Richard, H.; Wee Andrew, T. S.; Ho Peter, K. H. Band‐like Transport in Surface‐Functionalized Highly Solution‐Processable Graphene Nanosheets. Adv. Mater. 2008, 20, 3440-3446.
74.Park, S.; Dikin, D. A.; Nguyen, S. T.; Ruoff, R. S. Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine. J. Phy, Chem. C 2009, 113, 15801-15804.
75.Salavagione, H. J.; Gómez, M. A.; Martínez, G. Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol). Macromolecules 2009, 42, 6331-6334.
76.Yang, H.; Shan, C.; Li, F.; Han, D.; Zhang, Q.; Niu, L. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun. 2009, 0, 3880-3882.
77.Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342-3347.
78.Hontoria-Lucas, C.; López-Peinado, A. J.; López-González, J. d. D.; Rojas-Cervantes, M. L.; Martín-Aranda, R. M. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 1995, 33, 1585-1592.
79.Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C. Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups. J. Am. Chem. Soc. 2009, 131, 1336-1337.
80.Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F. Y. C.; Yan, Q.; Chen, P.; Zhang, H. In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. J. Phy. Chem. C 2009, 113, 10842-10846.
81.Huang, X.; Li, S.; Huang, Y.; Wu, S.; Zhou, X.; Li, S.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.
82.Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano. Lett. 2010, 10, 577-583.
83.Zhang, J.; Xiong, Z.; Zhao, X. S. Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem. 2011, 21, 3634.
84.Zhu, J.; Zhu, T.; Zhou, X.; Zhang, Y.; Lou, X. W.; Chen, X.; Zhang, H.; Hng, H. H.; Yan, Q. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 2011, 3, 1084-1089.
85.Lv, R.; Wang, X.; Lv, W.; Xu, Y.; Ge, Y.; He, H.; Li, G.; Wu, X.; Li, X.; Li, Q. Facile synthesis of ZnO nanorods grown on graphene sheets and its enhanced photocatalytic efficiency. J. Chem. Technol. Biotechnol. 2015, 90, 550-558.
86.Titelman, G. I.; Gelman, V.; Bron, S.; Khalfin, R. L.; Cohen, Y.; Bianco-Peled, H. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 2005, 43, 641-649.
87.Yu, W.; Xie, H.; Wang, X.; Wang, X. Highly Efficient Method for Preparing Homogeneous and Stable Colloids Containing Graphene Oxide. Nanoscale Res. Lett. 2010, 6, 47.
88.Kim, Y.; An, T. K.; Kim, J.; Hwang, J.; Park, S.; Nam, S.; Cha, H.; Park, W. J.; Baik, J. M.; Park, C. E. A composite of a graphene oxide derivative as a novel sensing layer in an organic field-effect transistor. J. Mater. Chem. C 2014, 2, 4539-4544.
89.Liu, J.; Jeong, H.; Liu, J.; Lee, K.; Park, J.-Y.; Ahn, Y. H.; Lee, S. Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 2010, 48, 2282-2289.
90.Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud''homme, R. K.; Aksay, I. A.; Car, R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett. 2008, 8, 36-41.
91.Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. J. Phy. Chem. C 2009, 113, 14071-14075.
電子全文 電子全文(網際網路公開日期:20230710)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔